scholarly journals Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions

2021 ◽  
Vol 13 (13) ◽  
pp. 7386
Author(s):  
Thomas Schaubroeck ◽  
Simon Schaubroeck ◽  
Reinout Heijungs ◽  
Alessandra Zamagni ◽  
Miguel Brandão ◽  
...  

To assess the potential environmental impact of human/industrial systems, life cycle assessment (LCA) is a very common method. There are two prominent types of LCA, namely attributional (ALCA) and consequential (CLCA). A lot of literature covers these approaches, but a general consensus on what they represent and an overview of all their differences seems lacking, nor has every prominent feature been fully explored. The two main objectives of this article are: (1) to argue for and select definitions for each concept and (2) specify all conceptual characteristics (including translation into modelling restrictions), re-evaluating and going beyond findings in the state of the art. For the first objective, mainly because the validity of interpretation of a term is also a matter of consensus, we argue the selection of definitions present in the 2011 UNEP-SETAC report. ALCA attributes a share of the potential environmental impact of the world to a product life cycle, while CLCA assesses the environmental consequences of a decision (e.g., increase of product demand). Regarding the second objective, the product system in ALCA constitutes all processes that are linked by physical, energy flows or services. Because of the requirement of additivity for ALCA, a double-counting check needs to be executed, modelling is restricted (e.g., guaranteed through linearity) and partitioning of multifunctional processes is systematically needed (for evaluation per single product). The latter matters also hold in a similar manner for the impact assessment, which is commonly overlooked. CLCA, is completely consequential and there is no limitation regarding what a modelling framework should entail, with the coverage of co-products through substitution being just one approach and not the only one (e.g., additional consumption is possible). Both ALCA and CLCA can be considered over any time span (past, present & future) and either using a reference environment or different scenarios. Furthermore, both ALCA and CLCA could be specific for average or marginal (small) products or decisions, and further datasets. These findings also hold for life cycle sustainability assessment.

2021 ◽  
Vol 6 (1) ◽  
pp. 139
Author(s):  
Rika Chairani ◽  
Aulia Risky Adinda ◽  
Dennis Fillipi ◽  
Muhamad Jatmoko ◽  
I Wayan Koko Suryawan

The cement industry is one type of industry that has implications for the emergence of environmental pollution problems and a decrease in environmental quality due to dust pollution. The cement industry can also increase air temperature and noise in operational activities by using machines. In addition, the impact of the cement industry is the decline in the quality of soil fertility due to clay mining. Thus, an analytical study is needed that can be used as one of the policy bases in the operational process of the cement industry. This study aims to conduct an analysis of environmental loads at each stage in the product life cycle, make decisions to identify environmental loads, and evaluate the environmental impact of a product that plays an important role in sustainable development. This method is known as Life Cycle Assessment (LCA). In this study, the boundary system used is cradle to gate with a three-scenario approach. The first uses 100% coal fuel, the second uses 90% coal fuel, and the third uses 10% rice husk biomass. Then the analysis was carried out using the OpenLCA software. The results of the analysis showed that the most significant emission load was carbon dioxide of 1229.31 kg CO2eq. The third scenario produces the lowest carbon dioxide emission load compared to other methods of 849.1 kg.


2018 ◽  
Vol 74 ◽  
pp. 05005
Author(s):  
Laurence ◽  
Josephine Kasena

Every year, the total of plastic industry in Indonesia grows rapidly. Not only giving positive effects on economic, but industrial development also causing a negative impact on the environment. Those negative impacts are caused by inefficiently using of resources and industrial waste which could pollute the environment. Therefore, it is necessary to calculate the impact itself by using the Life Cycle Assessment (LCA) method. The LCA could help us to take better decision to improve the production process and products which could minimize the energy consumption and resources. PT XYZ is a plastic injection company. This company hasn't collected, calculated and analysed their products and production process which may contribute to environmental damage. Therefore, this study will collect the data about the potential environmental impact which caused by the product of PT XYZ. LCA was performed at plastic car battery container type "X" and type "Y" using IMPACT 2002+ method in SimaPro8 software. The result of data calculation showing that the potential environmental impact is more dominant in these categories: respiratory inorganics, non-renewable energy, and global warming. The component which caused the greatest potential for respiratory inorganics and global warming is coming from electrical energy consumption (lignite).


2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


2021 ◽  
Vol 13 (7) ◽  
pp. 3856
Author(s):  
Rebeka Kovačič Lukman ◽  
Vasja Omahne ◽  
Damjan Krajnc

When considering the sustainability of production processes, research studies usually emphasise environmental impacts and do not adequately address economic and social impacts. Toy production is no exception when it comes to assessing sustainability. Previous research on toys has focused solely on assessing environmental aspects and neglected social and economic aspects. This paper presents a sustainability assessment of a toy using environmental life cycle assessment, life cycle costing, and social life cycle assessment. We conducted an inventory analysis and sustainability impact assessment of the toy to identify the hotspots of the system. The main environmental impacts are eutrophication, followed by terrestrial eco-toxicity, acidification, and global warming. The life cycle costing approach examined the economic aspect of the proposed design options for toys, while the social assessment of the alternative designs revealed social impacts along the product life cycle. In addition, different options based on the principles of the circular economy were analysed and proposed in terms of substitution of materials and shortening of transport distances for the toy studied.


2021 ◽  
Vol 12 (5) ◽  
pp. 6504-6515

With the development of additive manufacturing technology, 3D bone tissue engineering scaffolds have evolved. Bone tissue engineering is one of the techniques for repairing bone abnormalities caused by a variety of circumstances, such as injuries or the need to support damaged sections. Many bits of research have gone towards developing 3D bone tissue engineering scaffolds all across the world. The assessment of the environmental impact, on the other hand, has received less attention. As a result, the focus of this study is on developing a life cycle assessment (LCA) model for 3D bone tissue engineering scaffolds and evaluating potential environmental impacts. One of the methodologies to evaluating a complete environmental impact assessment is life cycle assessment (LCA). The cradle-to-grave method will be used in this study, and GaBi software was used to create the analysis for this study. Previous research on 3D bone tissue engineering fabrication employing poly(ethylene glycol) diacrylate (PEGDA) soaked in dimethyl sulfoxide (DMSO), and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) as a photoinitiator will be reviewed. Meanwhile, digital light processing (DLP) 3D printing is employed as the production technique. The GaBi program and the LCA model developed to highlight the potential environmental impact. This study shows how the input and output of LCA of 3D bone tissue engineering scaffolds might contribute to environmental issues such as air, freshwater, saltwater, and industrial soil emissions. The emission contributing to potential environmental impacts comes from life cycle input, electricity and transportation consumption, manufacturing process, and material resources. The results from this research can be used as an indicator for the researcher to take the impact of the development of 3D bone tissue engineering on the environment seriously.


2013 ◽  
Vol 4 (2) ◽  
pp. 103-109 ◽  
Author(s):  
E. Klaversma ◽  
A. W. C. van der Helm ◽  
J. W. N. M. Kappelhof

Waternet, the water cycle company of Amsterdam and surrounding areas, uses the life cycle assessment (LCA) method to evaluate the environmental impact of investment decisions and to determine the potential reduction of direct and indirect greenhouse gas (GHG) emissions of different alternatives. This approach enables Waternet to fulfil its corporate objective to improve sustainability and to become climate neutral by 2020. Three example studies that give a good overview of the use of LCAs at Waternet and problems encountered are discussed: phosphate removal and recovery from wastewater, pH correction of drinking water with carbon dioxide (CO2) and materials for drinking water distribution pipes. The environmental impact assessments were performed in SimaPro 7 using the ReCiPe method and the Intergovernmental Panel on Climate Change Global Warming Potential (IPCC GWP) 100a method. The Ecoinvent 2.0 and 2.2 databases were used for the material and process data. From the examples described, it can be concluded that only the phosphate removal case had a significant effect on the climate footprint. The article discusses applications and limitations of the LCA technique. The most important limitation is that the impact of water consumption and the possible impact of effluent compounds to surface water are not considered within the used methods.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana Jamile Damasceno Barbosa ◽  
Vitor Hugo de Paiva Santos ◽  
Priscilla Cavalcante de Araújo ◽  
Felipe Lucas de Medeiros ◽  
Letícia Yasmin da Silva Otaviano

PurposeThe paper aims to propose the development of an eco product to replace the traditional cotton swab that meets the expected needs, besides having a bias based on sustainability and economic viability.Design/methodology/approachThe applied nature article opted for an exploratory and descriptive study, with the objective of seeking a solution to a real problem: to reduce the environmental impact in the disposal of cotton swabs. To test this hypothesis, the exploratory stage evaluated the literature on the principles of eco design and environmental marketing to understand market viability and environmental impacts. The descriptive phase presented a comparative analysis between the original product and the proposed one, in terms of production processes and impacts of the product life cycle. Thus, an alternative product was conceived and validated applying the life cycle analysis (LCA).FindingsThe paper provides a comparative analysis between the eco product and the traditional product in order to validate the hypothesis that the new proposal reduces the environmental impact. It was found that both productive processes have similar impacts; however, the raw material of the proposed eco product demonstrated a significant reduction in the impact caused on the environment, considering cradle to cradle analysis.Originality/valueThis paper conceives an eco product as an alternative to traditional cotton swab, presenting an innovative potential in line with worldwide sustainability trends.


2005 ◽  
Vol 895 ◽  
Author(s):  
Antonia Moropoulou ◽  
Christopher Koroneos ◽  
Maria Karoglou ◽  
Eleni Aggelakopoulou ◽  
Asterios Bakolas ◽  
...  

AbstractOver the years considerable research has been conducted on masonry mortars regarding their compatibility with under restoration structures. The environmental dimension of these materials may sometimes be a prohibitive factor in the selection of these materials. Life Cycle Assessment (LCA) is a tool that can be used to assess the environmental impact of the materials. LCA can be a very useful tool in the decision making for the selection of appropriate restoration structural material. In this work, a comparison between traditional type of mortars and modern ones (cement-based) is attempted. Two mortars of traditional type are investigated: with aerial lime binder, with aerial lime and artificial pozzolanic additive and one with cement binder. The LCA results indicate that the traditional types of mortars are more sustainable compared to cementbased mortars. For the impact assessment, the method used is Eco-indicator 95


2020 ◽  
Vol 9 (3) ◽  
pp. 213-224
Author(s):  
Desrina Yusi Irawati ◽  
Melati Kurniawati

Kenaf fiber from the kenaf plant is the excellent raw material for industry because of the various diversified products it produces. To develop sustainable kenaf fiber, information is needed on the strengths and weaknesses of kenaf cultivation systems with respect to productivity and environmental impact. Therefore, a comprehensive environmental and economic impact assessment was conducted from cultivating kenaf to kenaf fiber. The environmental impact assessment uses the Life Cycle Assessment (LCA) method and economic calculations from the life cycle of kenaf to kenaf fiber to collectors use the Life Cycle Cost (LCC) method. The calculation of environmental impacts is in accordance with the stages of ISO 14040, using a single score assessment. The LCA results show that the treatment stage is the highest contributor of the three groups of impact categories. The highest to the lowest in the impact category group that was influenced by the treatment stage were resources with a value of 21.4 mPt, human health with a value of 8.76 mPt, and ecosystem quality with a value of 1.91 mPt. The cost identified through the LCC is Rp. 6,088,468,333, NVP and B/Cnet are positive. The results of the sensitivity analysis if there is a reduction in production> 6%, the business is still profitable and can be run.


Sign in / Sign up

Export Citation Format

Share Document