scholarly journals DETERMINATION OF INULIN FROM MULTIVITAMIN SYRUP PRODUCT BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY WITH RI DETECTOR

2012 ◽  
Vol 12 (2) ◽  
pp. 201-205 ◽  
Author(s):  
Yuni Retnaningtyas

At present, inulin is often added to multivitamin syrup product. The determination of the component of preparation both qualitatively and quantitatively is important to ensure quality of the product. This research is aimed to develop a high performance liquid chromatography method to analyze inulin in multivitamin syrup preparation. Separation of inulin from the sample, was performed using Aminex column HPX-87H (300 x 7.8 mm) Ion Exclusion at a temperature of 80 °C with isocratic elution system using deionized water as mobile phase at a flow rate of 0.5 mL/min, and detected by using refractive index detector. This method validation showed a good linearity with correlation coefficient (r) of 0.999 while the coefficient of variation of the regression function (Vx0) was 2.00%. The limit of detection (LOD) and the limit of quantification (LOQ) of the method were respectively 0.12 mg/mL and 0.37 mg/mL. The mean absolute recovery of inulin from the simulation sample was 99.42% and the method precision was less than 2%. The proposed method has been applied to the determination of inulin in commercial multivitamin syrup and the recovery of label claim was 99.9 mg/100 mL. The proposed HPLC method is rapid, simple, and selective for routine analysis.

2020 ◽  
Vol 8 (2) ◽  
pp. 1-7
Author(s):  
Ihsan M. Shaheed ◽  
Saadiyah A. Dhahir

The quinolizindine alkaloid compound, oxymatrine pesticide, was analysis in the river water samples collected from different agriculture areas in the Iraqi city of Kerbala and also in its formulation using developed reverse-phase high-performance liquid chromatography method. Acetonitrile:methanol (60:40 v/v) was chosen as mobile phase at pH (7.0), flow rate 0.5 mL/min, and 20 µL as volume injection. Modified ecological-friendly method, dispersive liquid-liquid microextraction, was used for the extraction of oxymatrine from water samples. Linearity study was constructed from 0.1 to 70 μg/mL at λmax 205 nm. The limit of detection and limit of quantification were 0.025 and 0.082 μg/mL, respectively, and the relative standard deviation (RSD) % was 0.518%. Three spiked levels of concentration (20.0, 40.0, and 70.0 μg/mL) were used for the validation method. The percentage recovery for the three spiked samples was ranged between 98.743 and 99.432 and the RSD% was between 0.051 and 0.202%, the formulation studies of oxymatrine between 99.487 and 99.798, and the RSD% was ranged from 0.045 to 0.057%. The developed method can be used accurately and selectively for the determination of oxymatrine in environmental samples and in the formulation.


2020 ◽  
Vol 17 (34) ◽  
pp. 1046-1054
Author(s):  
Ihsan Mahdi SHAHEED ◽  
Saadiyah Ahmed DHAHIR

The triazole, tebuconazole pesticide, was determined in its formulation and also in the river water samples collected from different agriculture areas in the Iraqui city of Kerbala using developed high-performance liquid chromatography method(HPLC) with UV-visible detection, The mobile composition phase was a mixture of acetonitrile:methanol (50:50 v/v) and the column was C18 (250 cm x 4.6 mm,5μm). Also modified dispersive liquidliquid microextraction (DLLME), which is regarded as an ecological -friendly method, was used for the extraction of tebuconazole from water samples using acetonitrile and chloroform as solvents extraction and dispersive agent, respectively. Linearity to maintain the calibration curve was achieved from (0.1-70) μg.mL-1 with a limit of detection(0.053) μg.mL-1 and limit of quantification (0.174) μg.mL-1. Three spiked levels of concentration (1.0, 5.0, and 10) μg.mL-1 were used for the validation of the method. The relative standard deviation (RSD%) was (0.294- 0.813)%, and the percentage recovery was (100.001-100.005). The formulation studies for two different concentrations (10 and 40) μg.mL-1, which prepared from tebuconazole formulation (Raxil ODS2 2%), gave acceptable percentage recovery between (98.956-99.833). The developed method can be used accurately for the determination of tebuconazole in water samples and in the formulation of tebuconazole effectively.


2021 ◽  
Vol 33 (4) ◽  
pp. 930-936
Author(s):  
Khaldun M. Al Azzam ◽  
Ahmad Makahleh ◽  
Bahruddin Saad

A new simple and sensitive high-performance liquid chromatography (HPLC) method for the determination of formaldehyde in flour samples has been developed. Formaldehyde was quantified after derivatization with a readily available reagent, 2,4,6-trichlorophenyl hydrazine (TCPH) under basic conditions. The formaldehyde-TCPH derivative was eluted with chromatographic mobile phase of 70:30 (v/v) acetonitrile:water at a flow rate of 1.0 mL min–1; wavelength, 222 nm; injection volume, 50 μL, using a C18 ODS Hypersil column (250 mm × 4.5 mm, 5 μm). The calibration curve was linear over the range of 0.001-10 μg mL-1 with R2 = 0.999. Recoveries at three different concentration levels (0.1, 1.0 and 5 μg mL-1) ranged from 92.0-101.7% with RSD less than of 2.2%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.3 and 1.0 ng mL-1, respectively. The developed method was used for the determination of formaldehyde in various flour-based samples.


2020 ◽  
Vol 20 (13) ◽  
pp. 1053-1059
Author(s):  
Mahmoud M. Sebaiy ◽  
Noha I. Ziedan

Background: Allergic diseases are considered as the major burden on public health with increased prevalence globally. Histamine H1-receptor antagonists are the foremost commonly used drugs in the treatment of allergic disorders. The target drug in this study, loratadine, belongs to this class of drugs and its biometabolite desloratadine which is also a non-sedating H1 receptor antagonist with anti-histaminic activity being 2.5 to 4 times greater than loratadine. This study aimed to develop and validate a novel isocratic Reversed-phase High-Performance Liquid Chromatography (RP-HPLC) method for rapid and simultaneous separation and determination of loratadine and its metabolite, desloratadine in human plasma. Methods: The drug extraction method from plasma was based on protein precipitation technique. The separation was carried out on a Thermo Scientific BDS Hypersil C18 column (5μm, 250 x 4.60 mm) in a mobile phase of MeOH: 0.025M KH2PO4 adjusted to pH 3.50 using orthophosphoric acid (85: 15, v/v) at an ambient temperature. The flow rate was maintained at 1 mL/min and maximum absorption was measured using the PDA detector at 248 nm. Results: The retention times of loratadine and desloratadine in plasma samples were recorded to be 4.10 and 5.08 minutes, respectively, indicating a short analysis time. Limits of detection were found to be 1.80 and 1.97 ng/mL for loratadine and desloratadine, respectively, showing a high degree of sensitivity of the method. The method was then validated according to FDA guidelines for the determination of the two analytes in human plasma. Conclusion: The results obtained indicate that the proposed method is rapid, sensitive in the nanogram range, accurate, selective, robust and reproducible compared to other reported methods.


2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2021 ◽  
pp. 1-11
Author(s):  
Sultan M. Alshahrani ◽  
John Mark Christensen

This study was designed to develop and validate a simple and efficient high performance liquid chromatography (HPLC) method to determine flunixin concentrations in Asian elephant’s (Elephas maximus) plasma. Flunixin was administered orally at a dose of 0.8 mg/kg, and blood samples were collected. Flunixin extraction was performed by adding an equal amount of acetonitrile to plasma and centrifuging at 4500 rpm for 25 minutes. The supernatant was removed, and flunixin was analyzed using HPLC-UV detection. Two methods were developed and tested utilizing two different mobile phases either with or without adding methanol (ACN: H2O vs. ACN: H2O: MeOH). Both methods showed excellent linearity and reproducibility. The limit of detection was 0.05 ug/ml and limit of quantification was 0.1 ug/ml. the efficiency of flunixin recovery was maximized by the addition of methanol to mobile phase (ACN: H2O: MeOH as 50:30:20) at 95% in comparison to 23% without methanol. In conclusion, adding methanol to HPLC methods for extraction of flunixin from elephants’ plasma yielded higher recovery rate than without methanol.


2011 ◽  
Vol 140 ◽  
pp. 296-301 ◽  
Author(s):  
Cai Mei Wu ◽  
Hong Min Yuan ◽  
Gang Jia ◽  
Zhi Sheng Wang ◽  
Xiu Qun Wu

A reversed high performance liquid chromatography method was developed for the quantitative determination of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala. Mimosine and 2,3DHP were extracted using 0.1N HCl.The chromatograph conditions were investigated and optimized. The optimal HPLC conditions as follows: Agilent HC-C18 column (4.6×150mm,5μm) was used at 30°C. The method used a variable wavelength UV detector at 280nm, the mobile phase consisted of 0.2 % (w/v) orthophosphoric acid and methanol, the gradient elution was adopted. The injection volume was 10μL. The linearity is favorable in the range of 1.0 to 50μg mL-1with a correlation coefficient of 0.99998 for mimosine and 0.99902 for 2,3DHP. Under the optimal conditions, the method limit of detection (LOD) of mimosine and 2,3DHP were 0.40mg/kg and 0.55mg/kg respectively. The recovery of mimosine was 87.00-94.70% with the RSD (n=5) of 2.75-3.81% in the spiked levels 0,1, 5, 20mg/g. At the same time, the recovery of 2,3DHP was 88-95.4% with the RSD (n=5) of 2.24-4.90%. The method was found to be simple, sensitive, fast and accurate, and has been applied successfully for the quantitative detection of mimosine and 2,3-DHP in leaves ofLeucaena Leucocephala, plasma and excretion of ruminant.


2020 ◽  
Vol 10 (9) ◽  
pp. 1581-1587
Author(s):  
Lei Shi ◽  
Chunqi Liang ◽  
Yongzhi Qi

A sulphurous acid thiolysis-HPLC method for the determination of procyanidins in pine bark products was established. The concentration of sulphurous acid is 1.2%, the concentration of benzyl mercaptan is 2%, the reaction temperature is 90 °C, and the reaction time is 60 minutes. Under these conditions, the preservative rates of catechin, epicatechin, epicatechin gallate and their benzyl sulfide derivatives were 89.7%, 86.2%, 95.4%, 63.1%, 64.6% and 73.5%, respectively. According to this study, the calculation method for the procyanidin content determination by the thiolysis-HPLC method was corrected.


2012 ◽  
Vol 57 (1) ◽  
pp. 484-489 ◽  
Author(s):  
Mei Zhang ◽  
Grant A. Moore ◽  
Murray L. Barclay ◽  
Evan J. Begg

ABSTRACTA rapid and simple high-performance liquid chromatography (HPLC) assay was developed for the simultaneous determination of three triazole antifungals (voriconazole, posaconazole, and itraconazole and the metabolite of itraconazole, hydroxyitraconazole) in human plasma. Sample preparation involved a simple one-step protein precipitation with 1.0 M perchloric acid and methanol. After centrifugation, the supernatant was injected directly into the HPLC system. Voriconazole, posaconazole, itraconazole, its metabolite hydroxyitraconazole, and the internal standard naproxen were resolved on a C6-phenyl column using gradient elution of 0.01 M phosphate buffer, pH 3.5, and acetonitrile and detected with UV detection at 262 nm. Standard curves were linear over the concentration range of 0.05 to 10 mg/liter (r2> 0.99). Bias was <8.0% from 0.05 to 10 mg/liter, intra- and interday coefficients of variation (imprecision) were <10%, and the limit of quantification was 0.05 mg/liter.


2020 ◽  
Vol 11 (02) ◽  
pp. 219-223
Author(s):  
Ansari Yaasir Ahmed ◽  
Qazi Shoeb ◽  
Umme Rumana ◽  
Patel Afroza ◽  
Pathan Vahid Tajkhan ◽  
...  

The new stability-indicating high performance liquid chromatography (HPLC) method has been developed and validated with different parameters for atenolol (ATE) and nifedipine (NIFE) in the combined dosage form. The chromatographic conditions were optimized using a mobile phase of MeOH:OPA (70:30) with a flow rate of 0.7 mL/min. Column (C18) of 4.6 × 250 mm dimension was used as a stationary phase; the particle size capacity of the column was 5 μm. The detection was carried out at 233 nm. The method was validated according to ICH guidelines for linearity, precision, repeatability, the limit of detection (LoD), and limit of quantitation (LoQ). The response was found to be linear in the concentration range of 20 to 100 mcg/mL for ATE and 1 to 5 mcg/mL for NIFE. The developed method shows the minimum quantity of drugs to be identified (LoD) and minimum drug to be quantified (LoQ). The LoD and LoQ were found to be 0.1415 and 0.4289, respectively, for ATE, and 0.1834 and 0.5558, respectively, for NIFE. The method was linear, simple, precise, and accurate and, therefore, suitable for routine analysis of drugs in tablet form. The forced degradation studies were also done through the exposure of analyte solution to four different stress conditions.


Sign in / Sign up

Export Citation Format

Share Document