scholarly journals Solvatochromism and Theoretical Studies of Dicyanobis(phenylpyridine)iridium(III) Complex Using Density Functional Theory

2021 ◽  
Vol 21 (3) ◽  
pp. 769
Author(s):  
Noorshida Mohd Ali ◽  
Anthony J. H. M. Meijer ◽  
Michael D. Ward ◽  
Norlinda Daud ◽  
Norhayati Hashim ◽  
...  

Luminescent cyanometallate [Ir(ppy)2(CN)2]– (ppy = C6H5C5H4N) has recently gained attention due to its desired photophysical properties. Our research group reported that the [Ir(ppy)2(CN)2]– has shown a negative solvatochromism like [Ru(bipy)(CN)4]2–, resulting in a blue-shift of the UV-Vis absorption bands in the water. Therefore, to gain insight into the specific solvent-solute interaction governed by the hydrogen bond in the solvation hydration shell, density functional theory (DFT) calculations were performed on the singlet ground state of the [Ir(ppy)2(CN)2]– and its solvent environment in the water at B3LYP level theory. It was demonstrated, seven water molecules provided a good description of the relevant spectra: IR and UV-Vis. The calculation reproduced the positions and intensities of the observed n(CºN) bands at 2069 and 2089 cm–1. The calculated MLCT transition wavelength was 366 nm vs. a measured value of 358 nm, differing by 8 nm. The study revealed the water molecules interacted with cyanide ligands through CN⋯H-OH type hydrogen bonds and water-water interactions (HO-H⋯OH2 type hydrogen bonds) were involved in the solvation hydration shell around the [Ir(ppy)2(CN)2]–.

2010 ◽  
Vol 88 (8) ◽  
pp. 736-743 ◽  
Author(s):  
Cara M. Nordstrom ◽  
Alaina J. McGrath ◽  
Ajit J. Thakkar

Density functional theory and spin-component-scaled Møller–Plesset perturbation theory calculations are used to examine the microsolvation of the formic acid dimer. The lowest energy structures with n water molecules consist of a n-water cluster, not necessarily of lowest energy, with two formic acid molecules attached to its surface by hydrogen bonds. The total number of hydrogen bonds does not correlate directly with relative stability.


2020 ◽  
Author(s):  
Georgios S.E. Antipas

Sequential deprotonation of the Cr3+ hexahydrate in an alkaline environment up to the stage of a charge-neutral active hydroxide was studied via density functional theory. The deprotonation could be characterized as autocatalytic since upon completion of every H-abstraction stage, Cr was found to mediate O-H dissociation in the next stage by pre-conditioning the ligand O atom that contributes the highest 2s density into Cr-4s based molecular orbitals; the latter amounts to a greater Cr-O distance due to increased charge density along the Cr-O axis. A direct effect of such Cr-4s/O-2s mixing is the reduction of electronegativity of the ligand-O atom and a corresponding high Voronoi deformation density (VDD) of the attached ligand-H atoms. Based on bonding energy decomposition, a facial to meridional isomer ratio of between 2:1 and 3:1 was derived as the most probable stereochemical mix of the active hydroxide; the latter forms, by mutual donation and acceptance, six hydrogen bonds with second hydration shell molecules.


Author(s):  
Huimin Guo ◽  
Xiaolin Ma ◽  
Zhiwen Lei ◽  
Yang Qiu ◽  
Bernhard Dick ◽  
...  

The electronic structure and photophysical properties of a series of N-Methyl and N-Acetyl substituted alloxazine (AZs) were investigated with extensive density functional theory (DFT) and time-dependent density functional theory (TD-DFT)...


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 926
Author(s):  
Malose J. Mphahlele ◽  
Eugene E. Onwu ◽  
Marole M. Maluleka

The conformations of the title compounds were determined in solution (NMR and UV-Vis spectroscopy) and in the solid state (FT-IR and XRD), complemented with density functional theory (DFT) in the gas phase. The nonequivalence of the amide protons of these compounds due to the hindered rotation of the C(O)–NH2 single bond resulted in two distinct resonances of different chemical shift values in the aromatic region of their 1H-NMR spectra. Intramolecular hydrogen bonding interactions between the carbonyl oxygen and the sulfonamide hydrogen atom were observed in the solution phase and solid state. XRD confirmed the ability of the amide moiety of this class of compounds to function as a hydrogen bond acceptor to form a six-membered hydrogen bonded ring and a donor simultaneously to form intermolecular hydrogen bonded complexes of the type N–H···O=S. The distorted tetrahedral geometry of the sulfur atom resulted in a deviation of the sulfonamide moiety from co-planarity of the anthranilamide scaffold, and this geometry enabled oxygen atoms to form hydrogen bonds in higher dimensions.


2020 ◽  
Author(s):  
Hugo Souza ◽  
Antonio Chaves Neto ◽  
Francisco Sousa ◽  
Rodrigo Amorim ◽  
Alexandre Reily Rocha ◽  
...  

In this work, we investigate the effects of building block separation of Phenylalanine-Tryptophan nanotube induced by the confined water molecules on the electronic properties using density-functional theory based tight-binding method. <div><br></div>


INEOS OPEN ◽  
2021 ◽  
Vol 4 ◽  
Author(s):  
Yu. A. Borisov ◽  
◽  
S. S. Kiselev ◽  

The interaction of cucurbiturils (Q6, Q7, and Q8) with Ca and Ba chlorides and iodides are studied for the first time by density functional theory. The thermodynamic parameters for the formation of host–guest complexes are calculated. The structures of complexes of Q6 and Q7 with one and two guest molecules are established. The energy parameters for the transfer of Be2+ and Ba2+ cations from an aqueous solution into the cavity of Q7 containing n water molecules are defined. The dependences of the formation energies for complexes Q7WnBe2+ and Q7WnBa2+ on the number of water molecules are shown to be parabolic, with the energy minima at n = 5 and n = 6, respectively. It is found that Q7 can form in an aqueous solution supramolecular complexes with protonated histamine (HA) and neutral histamine in the presence of Ca2+ ions.


2021 ◽  
Vol 129 (5) ◽  
pp. 599
Author(s):  
С.Н. Цеплина ◽  
E.E. Цеплин

Optical absorption spectra of 1,2-naphthoquinone in non-polar (n-hexane) and polar (water) solvents were obtained. It is shown that the use of quantum chemical calculations based on time-dependent density functional theory (TDDFT B3LYP/6-311+G(d, p)) with the polarizable continuum model (PCM) for calculating 1,2-naphthoquinone in a solution of n-hexane and hydrogen complex of 1,2-naphthoquinone with two water molecules in an aqueous medium describes well the shifts of the absorption bands of 1,2-naphthoquinone in a water solution compared to a solution in n-hexane. Based on the analysis of deviations of the calculated band shifts from the experimental ones, the question of the formation of 1,2-naphthoquinone hydrogen complexes with n water molecules (n = 1-4) in an aqueous solution is considered.


2012 ◽  
Vol 68 (4) ◽  
pp. o160-o163 ◽  
Author(s):  
David J. Szalda ◽  
Keith Ramig ◽  
Olga Lavinda ◽  
Zvi C. Koren ◽  
Lou Massa

6-Bromoindigo (MBI) [systematic name: 6-bromo-2-(3-oxo-2,3-dihydro-1H-indol-2-ylidene)-2,3-dihydro-1H-indol-3-one], C16H9BrN2O2, crystallizes with one disordered molecule in the asymmetric unit about a pseudo-inversion center, as shown by the Br-atom disorder of 0.682 (3):0.318 (3). The 18 indigo ring atoms occupy two sites which are displaced by 0.34 Å from each other as a result of this packing disorder. This difference in occupancy factors results in each atom in the reported model used to represent the two disordered sites being 0.08 Å from the higher-occupancy site and 0.26 Å from the lower-occupancy site. Thus, as a result of the disorder, the C—Br bond lengths in the disordered components are 0.08 and 0.26 Å shorter than those found in 6,6′-dibromoindigo (DBI) [Süsse & Krampe (1979).Naturwissenschaften,66, 110], although the distances within the indigo ring are similar to those found in DBI. The crystals are also twinned by merohedry. Stacking interactions and hydrogen bonds are similar to those found in the structures of indigo and DBI. In MBI, an interaction of the type C—Br...C replaces the C—Br...Br interactions found in DBI. The interactions in MBI were calculated quantum mechanically using density functional theory and the quantum theory of atoms in molecules.


Sign in / Sign up

Export Citation Format

Share Document