scholarly journals Optimization of Distribution System Reliability

Author(s):  
Laila Zemite ◽  
Janis Gerhards ◽  
Mihails Gorobecs ◽  
Anatolijs Ļevčenkovs

Reliability analysis of distribution systems has been attracting increasing attention. A special concern pertains to the distribution networks on which most failures occurs. The optimization of distribution system of breakers and power switches is a possible strategy to improve reliability. The paper describes development procedure for modelling restoring after a fault and calculating associated reliability indices and customers’ outage costs. The developed model of the network and reliability and outage costs calculating algorithm is suitable for multi-criteria analysis of the network. Proposed reliability and outage costs calculation algorithm is based on Monte Carlo simulation and genetic algorithm.

As an effective supplement to the centralized fossil fuel based traditional generation, Distributed Generation (DG) has become an effective alternative choice and has been rapidly increasing since past few years due to growing demand for electricity and the new policies of governing bodies for usage of green energy. In overall power system, distribution systems are more vulnerable to faults and reliability aspects of such systems becomes an important issue. With higher penetration of DG into the distribution network, it will be necessary to study the impact of such generation on the various aspects of distribution system. Thus, increase in rate of penetration DGs into the distribution system on one side and increased faults in distribution network on another side, will make the study of impact of DG integration on distribution system reliability an interesting topic of research. The present work focuses on evaluation of impacts of integration of such DGs on reliability of local distribution network, typically in an urban scenario By using the simulation method using DIgSILENT PowerFactory software, the impacts of integration of DG in terms of enhancement in distribution system reliability indices and reduction in system losses for different scenarios are studied and presented in this paper. Based on the simulation results obtained and after analysis of the distribution system, overall results are summarized by focusing on the installation of suitable capacity of DG and the location of DG which are important factors affecting the system losses and system reliability indices.


2021 ◽  
Vol 39 (4) ◽  
pp. 1198-1205
Author(s):  
J.N. Nweke ◽  
A.G. Gusau ◽  
L.M. Isah

A stable and reliable electric power supply system is a pre-requisite for the technological and economic growth of any nation. Nigeria's power supply has been experiencing incessant power interruptions caused by a failure in the distribution system. This paper developed a system planning approach as part of the key mitigation strategies for improved reliability and protection of the distribution network. The developed algorithm is tested using 33kV feeder supplying electricity to Kaura-Namoda, Zamfara State,  Nigeria. A customer-based reliability index was used as a tool to evaluate the reliability assessment of the feeder test system. The result showed that alternative 3 gives better results in terms of improvement of the system average interruption duration index (SAIDI), which in turn gives the minimum interrupted energy. Also, it is found that a greater number of sectionalizing switches do not give better results. It is very important to place the sectionalizing switches at a strategic location. If it is located at such points that will facilitate to sectionalize the faulty sections faster and to make the supply available to the unfaulty part of the network. Hence the utility company should apply this mitigation algorithm for system reliability improvement, depending on their needs and requirements. Thus, utilities can optimize network performance and better serve customers by adopting mitigation strategies in addressing trouble-prone areas to achieve a stable and reliable supply Keywords: distribution system; reliability; reliability indices; system performance evaluation; protection system; mitigation algorithms and sectionalizing switches 


Author(s):  
K. RAJU ◽  
P. Mercy hepciba rani ◽  
J. Prashanthi

Reliability is the most important factor of distribution system and this system should be operated economically with low customer loads interruption. This is because that the distribution system gives supply to customers from transmission system. There are some power quality issues due to the failures of components in distribution system. Researchers are going on to assess the reliability of the power system. In the power system, reliability evaluation is an important aspect in complete electric distribution system planning and operation. Due to the extreme scale of problem, it is not possible to conduct reliability on complete power system, it is performed independently. Hence, In this paper, the reliability of distribution system is evaluated by using an analytical method is described and is applied to the IEEE RBTS BUS-6. Development of reliability model of distribution system using Electrical Transient Analyzer Program (ETAP) software is developed. And the Distributed Generation is introduced for the improvement of reliability. Reliability indices are such as System Average Interruption Frequency Indices (SAIFI), System Average Interruption Duration Indices (SAIDI), Customer Average Interruption Frequency Indices (CAIFI), Customer Average Interruption Duration Indices (CAIDI), Energy Not Supplied (ENS), Average Service Availability Indices (ASAI), etc. The performance of reliability of the system is shown by these indices


Author(s):  
Subramanya Sarma S ◽  
V. Madhusudhan ◽  
V. Ganesh

<p>Reliability worth assessment is a primary concern in planning and designing of electrical distribution systems those operate in an economic manner with minimal interruption of electric supply to customer loads. Renewable energy sources (RES) based Distributed Generation (DG) units can be forecasted to penetrate in distribution networks due to advancement in their technology. The assessment of reliability worth of DG enhanced distribution networks is a relatively new research area. This paper proposes a methodology that can be used to analyze the reliability of active distribution systems (DG enhanced distribution system) and can be applied in preliminary planning studies to compute the reliability indices and statistics. The reliability assessment in this work is carried out with analytical approach applied on a test system and simulated results validate that installation of distributed generators can improve the distribution system reliability considerably.</p>


Author(s):  
A. Paci ◽  
R. Bualoti ◽  
M. Çelo

The most fundamental problems in the distribution system are the quality, the continuity, and the power supply. Political and economic changes were accompanied by changes in the structure of the electric load in the distribution network. Lack of investment and aging of the distribution company assets was accompanied by a decrease in the reliability of the distribution system. Identification and classification of assets from the point of view of their maintenance and replacement was one of the problems that were posed to the engineers. Fuzzy logic can be successfully used to evaluate distribution system reliability indices. In this paper fuzzy logic is used to evaluate the distribution system reliability indices of lines and transformers using six input variables. These variables considered the most important are: Age, Operation, Maintenance, Electrical current loading, Exposure and Weather conditions (Wind or Temperature). The fuzzy inferences knowledge-based IF-THEN rule is developed using Matlab Fuzzy software. The detailed analysis of the fuzzy system surfaces shows that the factors taken in consideration are dynamically and accurately connected to each other. The constructed rules based in engineering experience accurately represent the Reliability Indices.


2021 ◽  
Vol 13 (23) ◽  
pp. 13201
Author(s):  
Mohammad Reza Mansouri ◽  
Mohsen Simab ◽  
Bahman Bahmani Firouzi

This paper presents an innovative instantaneous pricing scheme for optimal operation and improved reliability for distribution systems (DS). The purpose of the proposed program is to maximize the operator’s expected profit under various risk-taking conditions, such that the customers pay the minimum cost to supply energy. Using the previous information of the energy consumption for each customer, a customer baseline load (CBL) is defined; the energy price for consumption costs higher and lower than this level would be different. The proposed scheme calculates the difference between the baseline load and the consumption curve with the electricity market price instead of calculating the total consumption of the customers with the unstable price of the electricity market, which is uncertain. In the proposed tariff, the developed cost and load models are included in the distribution system operation problem, and the objective function is modeled as a mixed integer linear programming (MILP) problem. Also, the effect of demand response (DR) and elasticity on the load curve, the final profit of the distribution system operator, and payment risk and operation costs are examined. Since there are various uncertainties in the smart distribution grid, the calculations being time-consuming and volumetric is important in the evaluation of reliability indices. Thus, when computation volume can be decreased and computation speed can be increased, analytical reliability analysis methods can be used, as they were in the present work. Finally, the changes in the reliability indices were calculated for the ratio of the customers’ sensitivity to the price and the customers’ participation in the proposed tariff using an analytical method based on Monte Carlo simulation (MCS). The results showed the efficiency of the proposed method in increasing the operator profit, reducing the operation costs, and enhancing the reliability indices.


2013 ◽  
Vol 860-863 ◽  
pp. 1967-1976
Author(s):  
Ming Jun Li ◽  
Yu Qiang Ou ◽  
De Hua Cai ◽  
Hui Jiang Mo

In this paper, a new kind of recursive algorithm has been raised. It optimized the distribution network system reliability calculations, improved some efficiency, and met the user's needs closely. This algorithm needs no network equivalence process,has no complex principle and brings no difficulty to programming.Through its failure analysis, can be more easily identify key equipment of distribution systems for customers to adjust. This algorithm can easily cooperate with fault reconfiguration.No adjacency matrix and special chain table will be formed during searching procedure; it takes advantage of basic table of node data and branch data to do searching work, and easily to get access with field data. The algorithm uses recursive search also reduces programming greatly.


Sign in / Sign up

Export Citation Format

Share Document