scholarly journals Distributed Generation Impact on Distribution System Reliability

Author(s):  
K. RAJU ◽  
P. Mercy hepciba rani ◽  
J. Prashanthi

Reliability is the most important factor of distribution system and this system should be operated economically with low customer loads interruption. This is because that the distribution system gives supply to customers from transmission system. There are some power quality issues due to the failures of components in distribution system. Researchers are going on to assess the reliability of the power system. In the power system, reliability evaluation is an important aspect in complete electric distribution system planning and operation. Due to the extreme scale of problem, it is not possible to conduct reliability on complete power system, it is performed independently. Hence, In this paper, the reliability of distribution system is evaluated by using an analytical method is described and is applied to the IEEE RBTS BUS-6. Development of reliability model of distribution system using Electrical Transient Analyzer Program (ETAP) software is developed. And the Distributed Generation is introduced for the improvement of reliability. Reliability indices are such as System Average Interruption Frequency Indices (SAIFI), System Average Interruption Duration Indices (SAIDI), Customer Average Interruption Frequency Indices (CAIFI), Customer Average Interruption Duration Indices (CAIDI), Energy Not Supplied (ENS), Average Service Availability Indices (ASAI), etc. The performance of reliability of the system is shown by these indices

As an effective supplement to the centralized fossil fuel based traditional generation, Distributed Generation (DG) has become an effective alternative choice and has been rapidly increasing since past few years due to growing demand for electricity and the new policies of governing bodies for usage of green energy. In overall power system, distribution systems are more vulnerable to faults and reliability aspects of such systems becomes an important issue. With higher penetration of DG into the distribution network, it will be necessary to study the impact of such generation on the various aspects of distribution system. Thus, increase in rate of penetration DGs into the distribution system on one side and increased faults in distribution network on another side, will make the study of impact of DG integration on distribution system reliability an interesting topic of research. The present work focuses on evaluation of impacts of integration of such DGs on reliability of local distribution network, typically in an urban scenario By using the simulation method using DIgSILENT PowerFactory software, the impacts of integration of DG in terms of enhancement in distribution system reliability indices and reduction in system losses for different scenarios are studied and presented in this paper. Based on the simulation results obtained and after analysis of the distribution system, overall results are summarized by focusing on the installation of suitable capacity of DG and the location of DG which are important factors affecting the system losses and system reliability indices.


2020 ◽  
Vol 8 (6) ◽  
pp. 5256-5259

This paper presents the customer scattering effect on distribution system reliability with Distributed Generation. In this, radial system with thirteen load points is considered and analyzed for six patterns of customer variation. The performance is observed with DG and without DG at different points along the feeder and analyzed customer scattering effect for optimum location of DG in terms of system reliability. Analysis determines the optimum DG location for improvement of system reliability varies with the customer scattering patterns.


Author(s):  
Cho Cho Myint ◽  
Ohn Zin Lin ◽  
Soe Soe Ei Aung

In Myanmar, as the main power generation is hydro power generation. the utility cannot supply sufficient power to customers during the dry season. Besides interruptions occur frequently due to aging system and lack of prospered protection. Therefore, reliability is an urgent issue in Myanmar. As a result of unbalance between generation and load, the distribution system is getting poor voltage profile, instability and high power losses in high load condition. According to network characteristics, the failure of a component always leads to consequence interruption in a radial distribution system.  Therefore, it is a must consideration to mitigate these challenges to enhance the system reliability. There are many techniques to solve the reliability problems such as reclosers, switching devices (manual and automated switches), system reconfiguration, feeder re-conducting and integration of distributed generation (DG). In this paper, system reliability assessment is evaluated in detail with the integration of the distributed generation such as PV-Diesel Hybrid System. The location of DG is chosen according to the expected energy not supply (EENS) and the voltage drop in proposed system. Next, the optimal sizing of DG is chosen depends on the penetration level of generator. Reliability indices can be evaluated depending on the failure rate(λ), repair time(r) and annual outage time(U) in Electrical Transient and Analysis Program (ETAP) software. The case study of this thesis is carried out in 33/11 kV network which is connected Kyatminton Substation, Kyaukse, Middle Myanmar.


2021 ◽  
Vol 39 (4) ◽  
pp. 1198-1205
Author(s):  
J.N. Nweke ◽  
A.G. Gusau ◽  
L.M. Isah

A stable and reliable electric power supply system is a pre-requisite for the technological and economic growth of any nation. Nigeria's power supply has been experiencing incessant power interruptions caused by a failure in the distribution system. This paper developed a system planning approach as part of the key mitigation strategies for improved reliability and protection of the distribution network. The developed algorithm is tested using 33kV feeder supplying electricity to Kaura-Namoda, Zamfara State,  Nigeria. A customer-based reliability index was used as a tool to evaluate the reliability assessment of the feeder test system. The result showed that alternative 3 gives better results in terms of improvement of the system average interruption duration index (SAIDI), which in turn gives the minimum interrupted energy. Also, it is found that a greater number of sectionalizing switches do not give better results. It is very important to place the sectionalizing switches at a strategic location. If it is located at such points that will facilitate to sectionalize the faulty sections faster and to make the supply available to the unfaulty part of the network. Hence the utility company should apply this mitigation algorithm for system reliability improvement, depending on their needs and requirements. Thus, utilities can optimize network performance and better serve customers by adopting mitigation strategies in addressing trouble-prone areas to achieve a stable and reliable supply Keywords: distribution system; reliability; reliability indices; system performance evaluation; protection system; mitigation algorithms and sectionalizing switches 


2021 ◽  
Vol 13 (20) ◽  
pp. 11407
Author(s):  
Sanaullah Ahmad ◽  
Azzam ul Asar

As energy demand is increasing, power systems’ complexities are also increasing. With growing energy demand, new ways and techniques are formulated by researchers to increase the efficiency and reliability of power systems. A distribution system, which is one of the most important entities in a power system, contributes up to 90% of reliability problems. For a sustainable supply of power to customers, the distribution system reliability must be enhanced. Distributed generation (DG) is a new way to improve distribution system reliability by bringing generation nearer to the load centers. Artificial intelligence (AI) is an area in which much innovation and research is going on. Different scientific areas are utilizing AI techniques to enhance system performance and reliability. This work aims to apply DG as a distributed source in a distribution system to evaluate its impacts on reliability. The location of the DG is a design criteria problem that has a relevant effect on the reliability of the distribution system. As the distance of load centers from the feeder increases, outage durations also increase. The reliability was enhanced, as the SAIFI value was reduced by almost 40%, the SAIDI value by 25%, and the EENS value by 25% after injecting DG into the distribution network. The artificial neural network (ANN) technique was utilized to find the optimal location of the DG; the results were validated by installing DG at prescribed localities. The results showed that the injection of DG at proper locations enhances the reliability of a distribution system. The proposed approach was applied to thte Roy Billinton Test System (RBTS). The implementation of the ANN technique is a unique approach to the selection of a location for a DG unit, which confirms that applying this computational technique could decrease human errors that are associated with the hit and trial methods and could also decrease the computational complexities and computational time. This research can assist distribution companies in determining the reliability of an actual distribution system for planning and expansion purposes, as well as in injecting a DG at the most optimal location in order to enhance the distribution system reliability.


Author(s):  
A. Paci ◽  
R. Bualoti ◽  
M. Çelo

The most fundamental problems in the distribution system are the quality, the continuity, and the power supply. Political and economic changes were accompanied by changes in the structure of the electric load in the distribution network. Lack of investment and aging of the distribution company assets was accompanied by a decrease in the reliability of the distribution system. Identification and classification of assets from the point of view of their maintenance and replacement was one of the problems that were posed to the engineers. Fuzzy logic can be successfully used to evaluate distribution system reliability indices. In this paper fuzzy logic is used to evaluate the distribution system reliability indices of lines and transformers using six input variables. These variables considered the most important are: Age, Operation, Maintenance, Electrical current loading, Exposure and Weather conditions (Wind or Temperature). The fuzzy inferences knowledge-based IF-THEN rule is developed using Matlab Fuzzy software. The detailed analysis of the fuzzy system surfaces shows that the factors taken in consideration are dynamically and accurately connected to each other. The constructed rules based in engineering experience accurately represent the Reliability Indices.


Sign in / Sign up

Export Citation Format

Share Document