scholarly journals Demand Forecast in Retail Assortment Optimization—Based on an Empirical Analysis of Beverage Sales

2020 ◽  
Vol 6 (1) ◽  
pp. p57
Author(s):  
Jun Chen ◽  
Xinyijing Zhang ◽  
Chenyang Zhao

This paper focus on establishing the demand forecasting model to optimize product assortments from a set of SKUs in the same category. The aim of the model is to achieve revenue maximization. Based on the attribute level, the demand model considers the consumers’ preference and the possibility of substitution between different attributes. Then it divides the product’s specific attributes and multiplies these attributes effects. Furthermore, one beverage case was applied to the demand model to do empirical analysis. Top beverage categories were selected and e-commerce sales data were collected to represent the pre-sale of whole categories. Moreover, a store named S with some beverage SKUs is assumed and applied to the model, which predicted sales volume of each existing SKU and the total revenue.

Author(s):  
Yujiro Wada ◽  
Kunihiro Hamada ◽  
Noritaka Hirata

AbstractThe shipbuilding industry has been drastically affected by demand fluctuations. Currently, it faces intense global competition and a crisis because of an imbalance between supply and demand. This imbalance of supply and demand is caused by an excess of shipbuilding capacity. The Organisation for Economic Co-operation and Development has considered adjusting the shipbuilding capacity to reduce the imbalance based on the demand forecast. On the other hand, demand forecast of shipbuilding is a complex issue because the demand is influenced indirectly by adjustments in shipbuilding capacity. Therefore, it is important to examine the influence of construction capacity adjustments on the future demand of ships based on demand forecasting for the sustainable growth of the shipbuilding industry. In this study, shipbuilding capacity adjustment is considered using a proposed simulation system based on a demand-forecasting model. Additionally, the system dynamics model of a previous study is improved by developing a ship price-prediction model for evaluating the shipbuilding capacity-adjustment scenario. We conduct simulations using the proposed demand-forecasting model and system to confirm the effectiveness of the proposed model and system. Furthermore, several shipbuilding capacity-adjustment scenarios are discussed using the proposed system.


2020 ◽  
pp. 1-11
Author(s):  
Hongjiang Ma ◽  
Xu Luo

The irrationality between the procurement and distribution of the logistics system increases unnecessary circulation links and greatly reduces logistics efficiency, which not only causes a waste of transportation resources, but also increases logistics costs. In order to improve the operation efficiency of the logistics system, based on the improved neural network algorithm, this paper combines the logistic regression algorithm to construct a logistics demand forecasting model based on the improved neural network algorithm. Moreover, according to the characteristics of the complexity of the data in the data mining task itself, this article optimizes the ladder network structure, and combines its supervisory decision-making part with the shallow network to make the model more suitable for logistics demand forecasting. In addition, this paper analyzes the performance of the model based on examples and uses the grey relational analysis method to give the degree of correlation between each influencing factor and logistics demand. The research results show that the model constructed in this paper is reasonable and can be analyzed from a practical perspective.


2021 ◽  
Vol 11 (18) ◽  
pp. 8612
Author(s):  
Santanu Kumar Dash ◽  
Michele Roccotelli ◽  
Rasmi Ranjan Khansama ◽  
Maria Pia Fanti ◽  
Agostino Marcello Mangini

The long-term electricity demand forecast of the consumer utilization is essential for the energy provider to analyze the future demand and for the accurate management of demand response. Forecasting the consumer electricity demand with efficient and accurate strategies will help the energy provider to optimally plan generation points, such as solar and wind, and produce energy accordingly to reduce the rate of depletion. Various demand forecasting models have been developed and implemented in the literature. However, an efficient and accurate forecasting model is required to study the daily consumption of the consumers from their historical data and forecast the necessary energy demand from the consumer’s side. The proposed recurrent neural network gradient boosting regression tree (RNN-GBRT) forecasting technique allows one to reduce the demand for electricity by studying the daily usage pattern of consumers, which would significantly help to cope with the accurate evaluation. The efficiency of the proposed forecasting model is compared with various conventional models. In addition, by the utilization of power consumption data, power theft detection in the distribution line is monitored to avoid financial losses by the utility provider. This paper also deals with the consumer’s energy analysis, useful in tracking the data consistency to detect any kind of abnormal and sudden change in the meter reading, thereby distinguishing the tampering of meters and power theft. Indeed, power theft is an important issue to be addressed particularly in developing and economically lagging countries, such as India. The results obtained by the proposed methodology have been analyzed and discussed to validate their efficacy.


Sign in / Sign up

Export Citation Format

Share Document