scholarly journals SYNTHESIS AND BIOLOGICAL PROPERTIES OF PHARMACEUTICALLY IMPORTANT XANTHONES AND BENZOXANTHONE ANALOGS: A BRIEF REVIEW.

Author(s):  
Pooja Bedi ◽  
Richa Gupta ◽  
Richa Gupta ◽  
Tanay Pramanik ◽  
Tanay Pramanik

 Xanthones are one of the biggest classes of compounds in natural product chemistry. A number of xanthones have been isolated from natural sources of higher plants such as fungi, ferns, and lichens. Synthetic analogs of xanthones have shown a large number of pharmacological properties such as antioxidant, anti-inflammatory, antidiabetics, antihistamine, antitumoral, antiulcer, and algicidal. Moreover, they also find usages in photodynamic therapy, laser technology, and dyes. This review lays stress on various solvents, catalyst and synthetic route for synthesis of xanthones, benzoxanthones analogs. The review has also focused on the classifications of xanthone as well as extensively studied biological properties of the xanthones and benzoxanthones analogs.

Author(s):  
Cosmas Chinweike Eze ◽  
Mercy Amarachukwu Ezeokonkwo ◽  
Benjamin Ebere Ezema ◽  
Abraham Efeturi Onoabedje ◽  
David Izuchukwu Ugwu

: Coumarin, sulphonamide and amide scaffolds exhibit diverse pharmacological features and constitute an important class of therapeutic agents. In this review, we have discussed the synthesis, biological properties, and SAR of coumarins containing sulphonamide or amide group in the last seven years. Many reviews on the therapeutic activities of coumarins, sulphonamides, and amides have been published, hence the authors focused on coumarin-linked sulphonamide or amide scaffolds. The review provides information on the synthetic route to new coumarins containing sulphonamide or amide groups with improved pharmacological properties.


Author(s):  
Habeeba S Shaikh ◽  
Ravindra S Jadhav ◽  
Dattaprasad N Vikhe

Nature has provide a medicinal agents since, for thousands of years and a impressive number of modern medicines. The medicines are isolated from natural sources; several supported their use in ancient medication. Higher plants, as sources of medicinal compounds, have continuing to play a dominant role in the upkeep of human health since ancient times. Over five hundredth of all trendy clinical medicine area units of natural product origin and play an necessary role in drug development programs in the pharmaceutical industry. Bauhinia racemosa Lam. are the plant which is broadly distributed in tropical climate regions. Bauhinia species are flowering trees found in Caesalpiniaceae family. The root and stem bark fibers which possesses curative properties. Ethnopharmacologically, varied elements of the plant starting from the bark of the plant to the gum obtained has been used in diseases like, Diarrhea, dysentery, fever etc. B. racemosa have the different photochemical constituents like flavonoids, glycosides, phenols, saponins, and tannins. several pharmacological actions of the plant already proved, that embrace anti-microbial, anthelmintic, antitumor activity. This review focus on the pharmacological actions and phytoconstituets of Bauhinia racemosa.


2019 ◽  
Vol 20 (4) ◽  
pp. 285-292 ◽  
Author(s):  
Abdullah M. Alnuqaydan ◽  
Bilal Rah

Background:Tamarix Articulata (T. articulata), commonly known as Tamarisk or Athal in Arabic region, belongs to the Tamaricaece species. It is an important halophytic medicinal plant and a good source of polyphenolic phytochemical(s). In traditional medicines, T. articulata extract is commonly used, either singly or in combination with other plant extracts against different ailments since ancient times.Methods:Electronic database survey via Pubmed, Google Scholar, Researchgate, Scopus and Science Direct were used to review the scientific inputs until October 2018, by searching appropriate keywords. Literature related to pharmacological activities of T. articulata, Tamarix species, phytochemical analysis of T. articulata, biological activities of T. articulata extracts. All of these terms were used to search the scientific literature associated with T. articulata; the dosage of extract, route of administration, extract type, and in-vitro and in-vivo model.Results:Numerous reports revealed that T. articulata contains a wide spectrum of phytochemical(s), which enables it to have a wide window of biological properties. Owing to the presence of high content of phytochemical compounds like polyphenolics and flavonoids, T. articulata is a potential source of antioxidant, anti-inflammatory and antiproliferative properties. In view of these pharmacological properties, T. articulata could be a potential drug candidate to treat various clinical conditions including cancer in the near future.Conclusion:In this review, the spectrum of phytochemical(s) has been summarized for their pharmacological properties and the mechanisms of action, and the possible potential therapeutic applications of this plant against various diseases discussed.


2019 ◽  
Vol 19 (17) ◽  
pp. 1392-1406
Author(s):  
Suvarna G. Kini ◽  
Ekta Rathi ◽  
Avinash Kumar ◽  
Varadaraj Bhat

Diphenyl ethers (DPE) and its analogs have exhibited excellent potential for therapeutic and industrial applications. Since the 19th century, intensive research is perpetuating on the synthetic routes and biological properties of DPEs. Few well-known DPEs are Nimesulide, Fenclofenac, Triclosan, Sorafenib, MK-4965, and MK-1439 which have shown the potential of this moiety as a lead scaffold for different pharmacological properties. In this review, we recapitulate the diverse synthetic route of DPE moiety inclusive of merits and demerits over the classical synthetic route and how this moiety sparked an interest in researchers to discern the SAR (Structure Activity Relationship) for the development of diversified biological properties of DPEs such as antimicrobial, antifungal, antiinflammatory & antiviral activities.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 637
Author(s):  
Mariacaterina Lianza ◽  
Ritchy Leroy ◽  
Carine Machado Rodrigues ◽  
Nicolas Borie ◽  
Charlotte Sayagh ◽  
...  

The role and importance of the identification of natural products are discussed in the perspective of the study of secondary metabolites. The rapid identification of already reported compounds, or structural dereplication, is recognized as a key element in natural product chemistry. The biological taxonomy of metabolite producing organisms, the knowledge of metabolite molecular structures, and the availability of metabolite spectroscopic signatures are considered as the three pillars of structural dereplication. The role and the construction of databases is illustrated by references to the KNApSAcK, UNPD, CSEARCH, and COCONUT databases, and by the importance of calculated taxonomic and spectroscopic data as substitutes for missing or lost original ones. Two NMR-based tools, the PNMRNP database that derives from UNPD, and KnapsackSearch, a database generator that provides taxonomically focused libraries of compounds, are proposed to the community of natural product chemists. The study of the alkaloids from Urceolina peruviana, a plant from the Andes used in traditional medicine for antibacterial and anticancer actions, has given the opportunity to test different approaches to dereplication, favoring the use of publicly available data sources.


Author(s):  
Hiroyuki Yamazaki

AbstractNature is a prolific source of organic products with diverse scaffolds and biological activities. The process of natural product discovery has gradually become more challenging, and advances in novel strategic approaches are essential to evolve natural product chemistry. Our focus has been on surveying untouched marine resources and fermentation to enhance microbial productive performance. The first topic is the screening of marine natural products isolated from Indonesian marine organisms for new types of bioactive compounds, such as antineoplastics, antimycobacterium substances, and inhibitors of protein tyrosine phosphatase 1B, sterol O-acyl-transferase, and bone morphogenetic protein-induced osteoblastic differentiation. The unique biological properties of marine organohalides are discussed herein and attempts to efficiently produce fungal halogenated metabolites are documented. This review presents an overview of our recent work accomplishments based on the MONOTORI study. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document