scholarly journals MODULATORY EFFECT OF POLYMER TYPE AND CONCENTRATION ON DRUG RELEASE FROM SUSTAINED RELEASE MATRIX TABLETS OF RANOLAZINE: A COMPARATIVE RELEASE KINETIC STUDY

Author(s):  
AHMED M AGIBA ◽  
WAGEEH ABDEL HAKEEM ◽  
ASHRAF G ZAYED

Objective: Ranolazine (RZ), antianginal drug indicated for the treatment of chronic stable angina pectoris, was formulated into sustained-release matrix tablets and optimized to improve patient compliance and achieve controlled release over a certain period. Methods: Different formulations were prepared by wet- and melt-granulation techniques. Excipients at different ratios as Eudragit® L100-55, Methocel™ E5, Avicel® PH-101, and carnauba wax powder were used to develop a ternary polymeric matrix system for the controlled delivery of RZ. The prepared formulations were subjected to granulometric and characteristic studies. Comparative dissolution and release kinetic studies of the selected formulation and the reference product, Ranexa® extended-release film-coated tablets, Gilead Sciences, Inc., USA, were further carried out to ensure product similarity. Results: The optimum pH-dependent to pH-independent polymers ratio was 1:1.3 (w/w). Extragranular carnauba wax in a concentration of 32.50 mg/tablet (2.50 gm% w/w) was the key excipient in controlling drug release kinetics by forming waxy matrix granules which prevent rapid dissolution. Modulation of the microenvironmental pH using a potent alkalinizing agent was very effective for controlling drug release patterns in different dissolution media from pH 1.2–6.8. Conclusion: The release of RZ from the matrix tablets was controlled for a period of 24 h, and thereby expected to provide patient compliance with minimal side effects.

1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


2020 ◽  
Vol 13 (3) ◽  
pp. 172-179
Author(s):  
Dharmendra Solanki ◽  
Mohit Motiwale ◽  
Sujata Mahapatra

Sustained-release (SR) matrix tablets of Acyclovir and polysaccharide isolated from corms of Colocasia esculenta, at different drug to polymer ratios, were prepared by using wet granulation method. The formulated tablets were also characterized by physical and chemical parameters and results were found in acceptable limits. The investigation focuses on the influence of the proportion of the matrix material on the mechanism and the release rate of the drug from the tablets. In vitro drug release appears to occur both by diffusion and a swelling-controlled mechanism, indicates the drug release from the tablet was non-Fickian super case II transport. The drug release data fit well to the Zero-order drug release Model and the Korsmeyer equation.


2020 ◽  
Vol 13 (3) ◽  
pp. 166-173
Author(s):  
Dharmendra Solanki ◽  
Mohit Motiwale

Sustained-release (SR) matrix tablets of Isoniazid and polysaccharide isolated from tubers of Dioscorea alata, at different drug to polymer ratios, were prepared by using wet granulation method. The formulated tablets were also characterized by physical and chemical parameters and results were found in acceptable limits. The investigation focuses on the influence of the proportion of the matrix material on the mechanism and the release rate of the drug from the tablets. In vitro drug release appears to occur both by diffusion and a swellingcontrolled mechanism, indicates the drug release from the tablet was non-Fickian super case II transport. The drug release data fit well to the Korsmeyer equation.


2012 ◽  
Vol 1 (8) ◽  
pp. 186 ◽  
Author(s):  
Urmi Das ◽  
Mohammad Salim Hossain

<p>Sustained release Carvedilol matrix tablets constituting Kollidon SR were developed in this study in an attempt to investigate the effect of release modifiers on the release profile of Carvedilol from matrix. Three matrix tablet formulations were prepared by direct compression of Kollidon SR in combination with release modifier (HPMC and Microcrystalline Cellulose) and magnesium stearate. Tablets containing only Kollidon SR with the active ingredient demonstrated a rapid rate of drug release. Incorporation of HPMC in the matrix tablet prolonged the release of drug but incorporation of Microcrystalline Cellulose showed superimposable release pattern with an initial burst effect as confirmed by mean dissolution time and Higuchi release rate data. After 7 hours of dissolution, Carvedilol release from the matrix systems were 91.42%, 83.41%, from formulation F1 and F2 respectively. Formulation F3 exhibited 100 % release at 4 hours. All the tablet formulations showed acceptable pharmaco-technical properties and complied with the in-house specifications for tablet weight variation, friability, hardness, thickness, and diameter. Prepared tablets also showed sustained release property for carvedilol. The drug release mechanism from the matrix tablets of F1 and F2 was found to be followed by Fickian and F3 by Non-Fickian mechanism.</p><p>DOI: <a href="http://dx.doi.org/10.3329/icpj.v1i8.11095">http://dx.doi.org/10.3329/icpj.v1i8.11095</a></p> <p>International Current Pharmaceutical Journal 2012, 1(8): 186-192</p>


2012 ◽  
Vol 48 (4) ◽  
pp. 621-628 ◽  
Author(s):  
Shahid Sarwar ◽  
Mohammad Salim Hossain

The present study was undertaken to develop sustained release (SR) matrix tablets of losartan potassium, an angiotensin-II antagonist for the treatment of hypertension. The tablets were prepared by direct compression method, along with Kollidon SR as release retardant polymer. The amount of losartan potassium remains fixed (100 mg) for all the three formulations whereas the amounts of Kollidon SR were 250 mg, 225 mg, and 200 mg for F-1, F-2, and F-3 respectively. The evaluation involves three stages: the micromeritic properties evaluation of granules, physical property studies of tablets, and in-vitro release kinetics studies. The USP apparatus type II was selected to perform the dissolution test, and the dissolution medium was 900 mL phosphate buffer pH 6.8. The test was carried out at 75 rpm, and the temperature was maintained at 37 ºC ± 0.5 ºC. The release kinetics was analyzed using several kinetics models. Higher polymeric content in the matrix decreased the release rate of drug. At lower polymeric level, the rate and extent of drug release were enhanced. All the formulations followed Higuchi release kinetics where the Regression co-efficient (R²) values are 0.958, 0.944, and 0.920 for F-1, F-2, and F-3 respectively, and they exhibited diffusion dominated drug release. Statistically significant (P<0.05) differences were found among the drug release profile from different level of polymeric matrices. The release mechanism changed from non-fickian (n=0.489 for F-1) to fickian (n=0.439 and 0.429 for F-2, and F-3 respectively) as a function of decreasing the polymer concentration. The Mean Dissolution Time (MDT) values were increased with the increase in polymer concentration.


1970 ◽  
Vol 2 (1) ◽  
pp. 27-31 ◽  
Author(s):  
Abul Kalam Lutful Kabir ◽  
Tasbira Jesmeen ◽  
Md Mesbah Uddin Talukder ◽  
Abu Taher Md Rajib ◽  
DM Mizanur Rahman

Commercially available four national and four international brands of esomeprazole magnesium sustained release matrix tablets were studied in simulated gastric medium (pH 1.2) for 2 hours and simulated intestinal medium (pH 6.8) for 8 hours time period using USP reference dissolution apparatus. All the national and international brands complied with the USP in-vitro dissolution specifications for drug release in simulated gastric medium. However, one of the national brands (Code: MP-1) and one of the international brands (MP-7) failed to fulfill the official requirement of 80% drug release within 8th hour in simulated intestinal medium. Drug release of that national and international brand were 70.49% and 67.05% respectively within the specified time period, however one national brand (Code: MP-4) released 103.46 % drug within 8th hour in intestinal medium. Drug release profiles were analyzed for zero order, first order and Higuchi equation to reveal the release kinetics perspective of esomeprazole magnesium sustained release matrix tablets. It was found that zero order release kinetics was the predominant release mechanism than first order and Higuchi release kinetics for those brands (Code: MP-2, MP-3, MP-4, MP-5, MP-6 and MP-8) which complied with the USP in vitro dissolution specification for drug releases. On the other hand, first order release kinetics was predominant for one national and also one international non compliant brands (Code: MP-1 and MP-6). Key Words: In vitro dissolution; Sustained release; Market preparations; Kinetic analysis; Esomeprazole; National brand; International brand. DOI: 10.3329/sjps.v2i1.5812Stamford Journal of Pharmaceutical Sciences Vol.2(1) 2009: 27-31


Author(s):  
S Shanmugam

Objective: The objective of the present study was to develop sustained release matrix tablets of levosulpiride by using natural polymers.Method: The tablets were prepared with different ratios of Chitosan, Xanthan gum and Guar gum by wet granulation technique. The solubility study of the levosulpiride was conducted to select a suitable dissolution media for in vitro drug release studies.Results: Fourier transform infrared (FTIR) study revealed no considerable changes in IR peak of levosulpiride and hence no interaction between drug and the excipients. DSC thermograms showed that no drug interaction occurred during the manufacturing process. In vitro dissolution study was carried out for all the formulation and the results compared with marketed sustained release tablet. The drug release from matrix tablets was found to decrease with increase in polymer ratio of Chitosan, Xanthan gum and Guar gum.Conclusion: Formulation LF3 exhibited almost similar drug release profile in dissolution media as that of marketed tablets. From the results of dissolution data fitted to various drug release kinetic equations, it was observed that highest correlation was found for First order, Higuchi’s and Korsmeyer equation, which indicate that the drug release occurred via diffusion mechanism.  Keywords: Levosulpiride, sustained release tablets, natural polymers, in vitro drug release studies 


Author(s):  
B. Valli Manalan ◽  
Nadendla Swathi ◽  
Narra Nandini ◽  
N. Hari Sree ◽  
Nilla Tejaswi Sai Maha Lakshmi ◽  
...  

The aim of the present study was to design an oral sustained release matrix tablet of highly water soluble biguanide anti diabetic drug. The matrix tablets are prepared by melt granulation method using HPMC K 200M as hydrophilic drug release retarding polymer, and stearic acid as melt able binder as well as hydrophobic carrier. The drug and excipients compatibility was studied by FT – IR. The formulated matrix tablets were characterized for physical parameters and in vitro dissolution profile. FT – IR spectra revealed the absence of drug excipients interaction. The physical parameters of the tablets were found within the limits. The drug release kinetics demonstrated that by increasing the concentration of hydrophilic polymer and hydrophobic carrier the drug release rate was retarded proportionally. Kinetic modelling of in vitro release profile revealing that the drug release from the matrix tablets following first order kinetics, and the drug release mechanism of optimized (F7) formula following non fickian transport mechanism. Accelerated stability studies were performed according to ICH guide lines. Temperature 40±20 c and relative humidity 75±5% RH to study physical and chemical changes of formulation. No physical or chemical changes were observed after t accelerated stability studies.


Author(s):  
P. Amsa ◽  
G. K. Mathan ◽  
S. Magibalan ◽  
E. K. Velliyangiri ◽  
T. Kalaivani ◽  
...  

The major goal of this study was to develop and evaluate Sustained release matrix tablets of Gabapentin with Hibiscus rosa - sinensis leaves mucilage prepared by using wet granulation technique with microcrystalline cellulose as a diluents and magnesium stearate as a lubricant. Pre-compression and post-compression evaluation of physicochemical parameters were carried out and to be within acceptable limits. Drug and polymer compatibility were validated by FTIR measurements. Further, tablets were evaluated for in vitro release study. To get the sustained release of Gabapentin, the concentration of Hibiscus rosa- sinensis mucilage was tuned with a gas-generating agent. The % drug release of all formulation from F1 to F5 showed 91.24%, 80.24%, 70.53%, 62.12% and 49.83% respectively. All the dosage form release kinetics was computed using zero order, first order, Higuchi, and Korsmeyer–Peppas methods. From the above results, it is concluded that the n value of formulation F5 showed 0.78 suggesting anomalous (non-fickian) behavior of the drug. Mucilage from the leaves of Hibiscus rosa-sinensis has a great retarding effect in drug release from sustained release tablets.


2021 ◽  
Vol 11 (2) ◽  
pp. 31-37
Author(s):  
Mehak Siddiqui ◽  
L. K. Omray ◽  
Pushpendra Soni

The overall objective of the present work was to develop an oral sustained-release (SR) Metformin tablet that is prepared by the direct compression method by using hydrophilic hydroxyl propyl methyl cellulose (HPMC) and Guar gum polymer alone as well as in combination at different concentrations. Metformin is a biguanide that has a relatively short plasma half-life. It has low absolute bioavailability. All the properties were evaluated for thickness, weight variation, hardness and drug content uniformity and in vitro drug release. The mean dissolution time is used to characterize the drug release rate from a dosage form that indicates the drug release-retarding efficiency of the polymer. The hydrophilic matrix of HPMC alone could not control the Metformin release effectively for 12 h but when combined with Guar gum, it could slow down the release of drug and, thus, can be successfully employed for formulating Sustain Release matrix tablets. Keywords: Guar gum, hydroxylpropylmethylcellulose, matrix tablets, release kinetics,


Sign in / Sign up

Export Citation Format

Share Document