scholarly journals FORMULATION AND EVALUATION OF IBUPROFEN CONTROLLED RELEASE MATRIX TABLETS USING ITS SOLID DISPERSION

Author(s):  
SREEJAN MANNA ◽  
JYOSHNA KOLLABATHULA

Objective: The aim of the present work was to prepare solid dispersion of ibuprofen with PEG 6000 to increase the aqueous solubility of the drug and to develop the solid dispersed ibuprofen into tablet formulation with the combination of a hydrophilic and hydrophobic polymer to attain controlled release of ibuprofen. Methods: Solid dispersion of ibuprofen was prepared by melting-solvent method by varying the ratio of drug and PEG 6000. The solid dispersed ibuprofen was subjected to tablet formulation by using a hydrophilic swellable polymer-carbopol and hydrophobic non-swellable polymer-ethyl cellulose. The release of the drug from the polymer matrix was studied as the polymer ratio changes. Results: Compatibility between drug and polymers was established from FT-IR study. The saturated solubility was found to increase in the solid dispersed formulation. The swelling index was found within the range of 90±5.43 to 137±6.41. SEM image of swollen tablet confirmed the presence of irregular and porous surface. The cumulative drug release was found to vary within the range of 68.76±3.04 to 95.33±2.34 % after 8 h of dissolution. Conclusion: The combination of solid dispersion and application of hydrophilic and hydrophobic polymers in matrix formation can facilitate better dissolution and absorption profile with greater patient compliance.

2020 ◽  
Vol 15 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Vikas Jhawat ◽  
Gandhi Sivaraman ◽  
Om Prakash Sunnapu ◽  
Ramya Krishna Nakkala ◽  
...  

Background: Venlafaxine HCl is a selective serotonin reuptake inhibitor which is given in the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for prolonged effect. Objective: The objective was to prepare and optimize the controlled release core in cup matrix tablet of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the effect with rate controlled drug release. Methods: The controlled release core in cup matrix tablets of venlafaxine HCl were prepared using HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium sterate, hydrogenated castor oil and micro crystalline cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations of polymers were prepared and evaluated for different physicochemical parameters such FTIR analysis for drug identification, In-vitro drug dissolution study was performed to evaluate the amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order, first order, Hixson–crowell and Higuchi equation to determine the mechanism of drug release and stability studies for 3 months as observed. Results: The results of hardness, thickness, weight variation, friability and drug content study were in acceptable range for all formulations. Based on the In vitro dissolution profile, formulation F-9 was considered to be the optimized extending the release of 98.32% of drug up to 24 hrs. The data fitting study showed that the optimized formulation followed the zero order release rate kinetics and also compared with innovator product (flavix XR) showed better drug release profile. Conclusion: The core-in-cup technology has a potential to control the release rate of freely water soluble drugs for single administration per day by optimization with combined use of hydrophilic and hydrophobic polymers.


2020 ◽  
Vol 15 (3) ◽  
pp. 219-225
Author(s):  
Tapan Kumar Giri ◽  
Payel Roy ◽  
Subhasis Maity

Background: Chili peppers are widely used in many cuisines as a spice, and capsaicin is the main component. It has been reported that capsaicin acts as an antihyperglycemic agent. However, it shows poor aqueous solubility and bioavailability. Objective: The is to enhance the aqueous solubility and antihyperglycemic activity of capsaicin through solid dispersion formulation. Methods: Solid dispersions were prepared by the solvent evaporation method using polyethylene glycol 6000 (PEG 6000) as a hydrophilic carrier. Polymer-drug miscibility and drug crystallinity were characterized through the differential thermal analysis and X-ray powder patterns analysis. Solid dispersions were evaluated for solubility, in vitro drug dissolution and in vivo animal study in rats. Results: Results of x-ray powder patterns analysis showed a considerable reduction of drug crystallinity in solid dispersion. Differential thermal analysis result revealed a complete disappearance of capsaicin melting onset temperature in solid dispersion. From the phase solubility data, it was observed that the aqueous solubility of capsaicin was increased with increasing concentration of PEG 6000. Solid dispersion formulation showed considerable enhancement of in vitro release of drugs in comparison to pure capsaicin. In vivo animal study in rats shows that the solid dispersion containing capsaicin significantly reduced the blood glucose level in comparison to the free capsaicin. Conclusion: Higher anti-hyperglycemic effect of capsaicin loaded solid dispersion in comparison to the pure drug may be due to the enhancement of aqueous solubility of capsaicin. Thus, the solid dispersion of capsaicin showed a simple approach for capsaicin delivery with improved antidiabetic activity.


2018 ◽  
Vol 8 (6) ◽  
pp. 183-191
Author(s):  
Goutam Mukhopadhyay ◽  
Rahul Mukhopadhyay ◽  
Ankita Mukhopadhyay ◽  
Shymodip Kundu ◽  
Banerjee Shreya ◽  
...  

Aims & Objectives: The present work deals with the modification of controlled release dosage form of poorly water soluble drug (Metoclopramide hydrochloride) in order to improve the bioavailability and to control drug release for a longer period of time by the aid of solid dispersion. Methods: Various binary combination of MET-solid dispersion was prepared with different carriers such as HPβCD, PVP K30 and PLX-188 by solvent evaporation technique and then the aqueous solubility, dissolution study and phase solubility study was performed. DSC analysis is performed to carry out for metoclopramide loaded solid dispersion, physical mixture & also for pure drug to analyze the crystalline and amorphous nature of compounds. Results and Discussion:  The saturation solubility of Metoclopramide with various carriers at different pH was performed and found that in pH 5.5 (solubility is 5553.2µg/ml), pH 6.8 (3363.3µ/ml), pH 7.4 (1367.3µg/ml) at 37oC. In dissolution study of solid dispersion (5:1) of different carriers in DDW, the Cumulative % dissolution is found in the order of PVP K30>PLX-Met>HPβCD-Met & in pH 7.4, in the order of PLX-Met>PVP K30>HPβCD-Met. DSC thermogram of Metoclopramide base showed a sharp endothermic peak at its melting point (147oC) which exhibits in crystalline form complying with that of Metoclopramide hydrochloride form, melting point was found to be 850C.  In the ex-vivo study of several transdermal patches, patch C [SD of MET: HPβCD (1:5)] showed the controlled release and permeation of drug. Conclusion: Poor solubility of new chemical entities being a well known problem for past few decades despite the imbalance between significant research efforts & few successful marketed formulations, the solid dispersion proves to hold a key position among all the various formulation strategies to enhance the aqueous solubility & dissolution rate and thereby the bioavailability of  poorly aqueous solubility of drug. Keywords: Bioavailability,DSC, Metoclopramide hydrochloride, solid dispersion, HPβCD,


Author(s):  
Kukkadapu Pavan Kumar ◽  
Katta Sunand ◽  
Nerella Mounika ◽  
Mohammed Abdul Samad ◽  
A. Madhu Babu ◽  
...  

A drug molecule has to be water-soluble to be readily delivered to the cellular membrane. Many drugs are waterinsoluble, which creates numerous problems in the development of dosage forms. Controlled drug delivery formulation releases the drug with controlled kinetics for days and months, reducing the frequency of dosing, minimizing side effects, and improving patient compliance. Nisoldipine is a calcium channel antagonist that is indicated for the treatment of hypertension with very poor aqueous solubility. Thus, there is a need to improve the rate of drug release. Hence, the study was carried out to design, formulate and evaluate sustained-release tablet formulation of nisoldipine. Nisoldipine controlled release matrix tablets were prepared by roll compaction method. Preformulation studies have confirmed the purity and compatibility of drug with excipients used in the formulation. Pre-compression studies have confirmed the stability of formulation blends for compression. All the prepared formulations were evaluated for various physical and compression parameters such as bulk and tapped density, hardness, friability, and in vitro drug release studies. The results of drug release from prepared compressed nisoldipine extended-release tablets were found to be within the desired range.


Author(s):  
Ramisetty Sunitha ◽  
Kothakota Venugopal ◽  
Suggala Venkata Satyanarayana

The current study deals with formulation and evaluation of gliclazide solid dispersion with HP β Cyclodextrin to enhance solubility and incorporate into tablet formulation for controlled release of gliclazide. Gliclazide solid dispersion (SD) prepared using varying ratios of HP β Cyclodextrin and evaluated. The optimized SD formulation incorporated into tablet by using hydroxypropyl cellulose, HPMC K 100M. The drug dissolution from tablet formulation analyzed and characterize. The formulation SD3 comprising of drug and polymer in 1:3 ratio displayed 43-fold increase in solubility when compared to pure drug. The formulation SD13 displayed maximum yield of 98.96% and maximum drug content of 99% chosen optimal for tablet formulation. FTIR studies revealed that there is no incompatibility between drug and polymers found. XRD studies revealed that the optimized solid dispersion formulation was found to be in amorphous state. Around 15 formulations of controlled release tablet blends evaluated for micrometric properties show that all the formulations posses’ good flow properties. Formulation F15 with maximum drug content of 99.99% and drug release of 99.96 % over 16h was chosen optimal and characterized. The release kinetics suggest that drug release followed zero order and release from tablets was anomalous non- fickian diffusion super case II transport. The results show that combination of solid dispersion and application of hydrophilic and hydrophobic polymers in matrix formation can facilitate better dissolution and absorption profile with greater patient compliance.


Author(s):  
EMAN HUSSAIN ELMUBARAK ◽  
ZUHEIR ABDELRAHMAN OSMAN ◽  
MOHAMMED ABDELRAHMAN

Objective: The objective of the present study was to improve the aqueous solubility and dissolution characteristics of the loop diuretic furosemide (FUR); a class IV drug in the Biopharmaceutical Classification System (BCS) using solid dispersion technique. Methods: Solvent evaporation and kneading methods were used to produce solid dispersions of FUR in different ratios with the hydrophilic carrier polyvinylpyrrolidone K-30 (PVP-K30). The prepared solid dispersions were evaluated in terms of solubility study, percentage yield, drug content and Fourier transform infrared spectroscopic study (FT-IR). Tablets containing the optimized formula of solid dispersions ( were formulated and their dissolution characteristics were compared with commercial furosemide tablets. Results: The prepared solid dispersions showed an increase in aqueous solubility, especially those formulated in a 1:2 drug: carrier ratio using solvent evaporation method ( it showed a four-fold increase in solubility compared to the parent drug. The absence of drug-carrier chemical interactions that could affect the dissolution was proved by FT-IR. Solid dispersion tablets exhibited a better dissolution profile in simulated gastric fluid pH 1.2 at 37°C ± 0.5 than the commercial FUR tablets in terms of mean dissolution time (8.44 min) and dissolution efficiency in 30 min (42.54%). Both FUR solid dispersions and commercial tablets followed Weibull and Krosmeyer models as the two best models of drug release kinetics proving that they were immediate release. Conclusion: According to the results obtained in this study, solid dispersion techniques could be successfully used for the enhancement of aqueous solubility and dissolution rate of FUR.


2015 ◽  
Vol 51 (4) ◽  
pp. 957-966 ◽  
Author(s):  
Alexandre Machado Rubim ◽  
Jaqueline Bandeira Rubenick ◽  
Eduarda Gregolin ◽  
Luciane Varini Laporta ◽  
Rosimar Leitenberg ◽  
...  

abstract Amiodarone HCl is an antiarrhythmic agent, which has low aqueous solubility and presents absorption problems. This study aimed to develop inclusion complexes containing hydrophilic carriers PEG 1500, 4000 and 6000 by fusion and kneading methods in order to evaluate the increase in solubility and dissolution rate of amiodarone HCl. The solid dispersion and physical mixtures were characterized by X-ray diffraction, FT-IR spectra, water solubility and dissolution profiles. Both methods and carriers increased the solubility of drug, however PEG 6000 enhanced the drug solubility in solid dispersion better than other carriers. Different media were evaluated for the solubility study, including distilled water, acid buffer pH 1.2, acetate buffer pH 4.5 and phosphate buffer pH 6.8 at 37 ºC. Based on the evaluation of the results obtained in the study phase solubility carriers PEG 4000 and PEG 6000 were selected for the preparation of the physical mixture and solid dispersion. All formulations were prepared at drug-carrier ratios of 1:1 to 1:10(w/w). The results of in vitro release studies indicated that the solid dispersion technique by fusion method in proportion of 1:10 (w/w) increased significantly the dissolution rate of the drug. X-ray diffraction studies showed reduced drug crystallinity in the solid dispersions. FT-IR demonstrated interactions between the drug and polymers.


Author(s):  
RAVI PARIMI ◽  
RAMA RAO VADAPALLI ◽  
K. E. PRAVALLIKA

Objective: The prior objective of the current research work was to develop once-daily levetiracetam extended/controlled-release tablets having zero-order release kinetics with the plastic matrix as the release retarding element. For a high water-soluble drug, the formulation of a dosage form so as to have an extended drug release has always been a difficult task. Methods: In the current work, levetiracetam which is a highly soluble drug was taken as the model drug for which extended-release matrix tablets were developed using varied plastic polymers like Polyvinyl acetate (PVAc), Polyvinyl chloride (PVC), Eudragit RSPO and Eudragit RLPO. PVP was considered as a pore-forming agent and PEG 6000 was taken as a water regulating agent. The porous plastic matrix tablets were prepared by embedding the drug in solvent-activated polymer dispersion followed by drying, sieving, mixing with other excipients and finally compressed. Including physical characterization studies and drug release studies, the tablets were subjected to SEM studies before and after the dissolution studies to analyze the effect of the pore former. Results: Pre-compression mixtures exhibited good packageability of 81-92% and hence the compressed tablets were strong enough with good tensile strength in the range of 0.78–0.90 N/mm2. Drug release study results showed that the drug release was controlled for a period of 12–24h. PVAc had shown better controlled-release among all the plastic polymers taken. PEG 6000 in combination with PVP produced the desired zero-order drug release. Conclusion: The levetiracetam porous plastic matrix tablets were developed with zero-order drug release that was effectively controlled for 24hr.


Sign in / Sign up

Export Citation Format

Share Document