Formulation and Characterization of Solid Dispersion Containing Capsaicin for the Treatment of Diabetes

2020 ◽  
Vol 15 (3) ◽  
pp. 219-225
Author(s):  
Tapan Kumar Giri ◽  
Payel Roy ◽  
Subhasis Maity

Background: Chili peppers are widely used in many cuisines as a spice, and capsaicin is the main component. It has been reported that capsaicin acts as an antihyperglycemic agent. However, it shows poor aqueous solubility and bioavailability. Objective: The is to enhance the aqueous solubility and antihyperglycemic activity of capsaicin through solid dispersion formulation. Methods: Solid dispersions were prepared by the solvent evaporation method using polyethylene glycol 6000 (PEG 6000) as a hydrophilic carrier. Polymer-drug miscibility and drug crystallinity were characterized through the differential thermal analysis and X-ray powder patterns analysis. Solid dispersions were evaluated for solubility, in vitro drug dissolution and in vivo animal study in rats. Results: Results of x-ray powder patterns analysis showed a considerable reduction of drug crystallinity in solid dispersion. Differential thermal analysis result revealed a complete disappearance of capsaicin melting onset temperature in solid dispersion. From the phase solubility data, it was observed that the aqueous solubility of capsaicin was increased with increasing concentration of PEG 6000. Solid dispersion formulation showed considerable enhancement of in vitro release of drugs in comparison to pure capsaicin. In vivo animal study in rats shows that the solid dispersion containing capsaicin significantly reduced the blood glucose level in comparison to the free capsaicin. Conclusion: Higher anti-hyperglycemic effect of capsaicin loaded solid dispersion in comparison to the pure drug may be due to the enhancement of aqueous solubility of capsaicin. Thus, the solid dispersion of capsaicin showed a simple approach for capsaicin delivery with improved antidiabetic activity.

2020 ◽  
Vol 10 (3) ◽  
pp. 330-349
Author(s):  
Raghvendra Chaubey ◽  
Nimisha Srivastava ◽  
Apoorva Singh

Objective: The objective of present study was to enhance the potential activities of Quercetin by improving its solubility and dissolution profiles through solid dispersion approach. Method: A three level full factorial design (32) was adopted to study the possible combinations of polyethylene glycol (PEG) 6000 & pluronic F 127 (PF 127). The solid dispersions were prepared by solvent evaporation method and evaluated for percentage yield, drug content, aqueous solubility and drug release. For in vivo evaluations SD4 was incorporated into Carbopol base gel and subjected to anti-inflammatory activity using carrageenan-induced rat paw edema method. Results: SD4 batch with drug to carrier ratio 1:1 showed release of 82.96 ± 1.76 % in 240 min following Higuchi’s model. It was 5.54 fold increment in solubility as compared to quercetin. SD4 batch was further evaluated by FTIR, DSC, PXRD and SEM. The crystallinity was significantly reduced and drug was homogeneously dispersed in the carrier as shown by the results of DSC, PXRD and SEM. The DPPH scavenging assay showed significance in the IC50 value of SD4 as compared to pure quercetin and ascorbic acid when subjected to one way ANOVA at 0.05 level of significance (P<0.0001). In vivo anti-inflammatory study showed 78.17 ± 0.156 % inhibition of edema by SD4 and 58.64 ± 0.640 % by pure quercetin which is significantly lower (P<0.05). Conclusion: These findings demonstrate that the solid dispersion of quercetin shows increased solubility, dissolution profile, drug release and significant potential in enhancing the antiinflammatory activity of drug.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


2019 ◽  
Vol 20 (6) ◽  
pp. 1381 ◽  
Author(s):  
Adele Chimento ◽  
Francesca De Amicis ◽  
Rosa Sirianni ◽  
Maria Sinicropi ◽  
Francesco Puoci ◽  
...  

Resveratrol (3,5,4′-trihydroxystilbene; RSV) is a natural nonflavonoid polyphenol present in many species of plants, particularly in grapes, blueberries, and peanuts. Several in vitro and in vivo studies have shown that in addition to antioxidant, anti-inflammatory, cardioprotective and neuroprotective actions, it exhibits antitumor properties. In mammalian models, RSV is extensively metabolized and rapidly eliminated and therefore it shows a poor bioavailability, in spite it of its lipophilic nature. During the past decade, in order to improve RSV low aqueous solubility, absorption, membrane transport, and its poor bioavailability, various methodological approaches and different synthetic derivatives have been developed. In this review, we will describe the strategies used to improve pharmacokinetic characteristics and then beneficial effects of RSV. These methodological approaches include RSV nanoencapsulation in lipid nanocarriers or liposomes, nanoemulsions, micelles, insertion into polymeric particles, solid dispersions, and nanocrystals. Moreover, the biological results obtained on several synthetic derivatives containing different substituents, such as methoxylic, hydroxylic groups, or halogens on the RSV aromatic rings, will be described. Results reported in the literature are encouraging but require additional in vivo studies, to support clinical applications.


Author(s):  
Md. Shahidul Islam ◽  
Rasheda Akter Lucky

The poor aqueous solubility of the drug exhibits in variable dissolution rate and hence poor bioavailability. Aceclofenac is poorly water soluble drug. The aim of the present study was to improve the water solubility and the dissolution rate of Aceclofenac by solid dispersion technique using different water soluble polymers. The term solid dispersions refer to the dispersions of one or more active ingredients in an inert carrier or matrix at solid state. In this study, binary solid dispersion of Aceclofenac were prepared by fusion method using Polyethylene glycol 6000 (PEG 6000), Polyethylene glycol 4000 (PEG 4000), Poloxamer as carrier. Different drug-carrier weight ratio was used for this study. The effect of the carrier on the solubility and in-vitro dissolution were studied. It was found the drug was released 26.86% after 5 minutes and only 40.19% within 60 mins from active Aceclofenac on the other hand the release pattern of Aceclofenac from the binary SD formulation containing PEG 6000 in 1:5 ratio (Formulation coding: A5) showed the best result in comparison of other binary and ternary SD formulations which was 62.29% after 5 min and 83.03% within 60 mins. The hydrophilic polymers used for the preparation of solid dispersion are showed significant increase in the solubility of Aceclofenac.


2020 ◽  
Vol 27 (1) ◽  
pp. 111-120
Author(s):  
Alaa Yosf Bazeed ◽  
Ahmed Nouh ◽  
Ebtessam Ahmed Essa ◽  
Gamal El Maghraby

Background: Cilostazol is an anti-platelets drug with considerable antithrombotic effects in vivo. Therefore, it is widely used by elderly patients. However, it suffers from poor bioavailability due to its low aqueous solubility. The objective of this work was to enhance the dissolution of cilostazol with the aim of formulating fast dissolving tablets for geriatrics and those of swallowing difficulties. Methods: Ethanol-assisted co-grinding of cilostazol with sugar-based excipients was adopted. Sucralose and mannitol were used for this purpose as hydrophilic excipient as well as taste improving agents. The obtained products were investigated regarding differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction, scanning electron microscope (SEM) and in vitro drug dissolution. Fast disintegrating tablets were prepared and evaluated. Results: Thermal behavior of the developed products reflected reduced crystallinity, it also suggested possible existence of new crystalline species with sucralose. Eutexia was also suggested for mannitol mixtures, that was supported by X-ray diffraction data. SEM indicated size reduction with the deposition of the drug as submicron particles over the excipient surface. Co-processing markedly improved cilostazol dissolution compared to unprocessed drug. The optimized formulations were successively formulated into fast disintegrating tablets. Conclusion: This investigation introduced the wet grinding strategy with sugar excipients as a platform for the formulation of easy to use tablets with optimum drug release.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Abdulla Sherikar ◽  
Mohd Usman Mohd Siddique ◽  
Mahesh More ◽  
Sameer N. Goyal ◽  
Milan Milivojevic ◽  
...  

Solubility of phytochemicals is a major concern for drug delivery, permeability, and their biological response. However, advancements in the novel formulation technologies have been helping to overcome these challenges. The applications of these newer technologies are easy for commercialization and high therapeutic outcomes compared to conventional formulations. Considering these facts, the present study is aimed to prepare a silymarin-loaded eutectic mixture with three different ratios of Polyvinylpyrrolidone K30 (PVP K30) and evaluating their anti-inflammatory, and hepatoprotective effects. The preliminary phytochemical and characterization of silymarin, physical mixture, and solid dispersions suggested and successfully confirmed the formation of solid dispersion of silymarin with PVP K30. It was found that the solubility of silymarin was increased by 5-fold compared to pure silymarin. Moreover, the in vitro dissolution displayed that 83% of silymarin released within 2 h with 2.8-fold increase in dissolution rate compared to pure silymarin. Also, the in vivo study suggested that the formulation significantly reduced the carbon tetrachloride- ( 0.8620 ± 0.05034 ∗ ∗ for 1 : 3 ratio), paracetamol- ( 0.7300 ± 0.01517 ∗ ∗ for 1 : 3 ratio), and ethanol- ( 0.8100 ± 0.04037 ∗ ∗ for 1 : 3 ratio) induced hepatotoxicity in rats. Silymarin solid dispersion was prepared using homogenization methods that have prominent anti-inflammatory effect ( 0.6520 ± 0.008602 ∗ ∗ with 8.33%) in carrageenan-induced rat paw model.


Author(s):  
Sohansinh S. Vaghela ◽  
Samkit M. Shah ◽  
Sanjesh G. Rathi ◽  
Shrenik K. Shah

Flurbiprofen solid dispersion Adsorbate (SDA) has been prepared using PEG 4000 and Poloxamer 188 as carrier and Neusilin as adsorbent material. The SDA of Flurbiprofen was prepared by using Fusion method in various drugs to carrier ratios. The phase solubility study concludes that both polymers have ability to improve the aqueous solubility of flurbiprofen. Pure API Flurbiprofen and final formulation samples of SDA are characterized by FTIR, DSC and X-ray diffraction spectroscopy. X-ray powder diffraction and DSC study indicated that the drug was present in amorphous form. FTIR study revealed that the characteristic peaks in spectra of pure Flurbiprofen are also present in spectra of SDA’s. Drug found compatible with the excipients. The highest improvement in solubility and in-vitro drug release were observed in solid dispersion prepared with Poloxamer 188 (F14) by fusion method. The increased dissolution rate of drug from solid dispersion adsorbates may be due to surface tension lowering effect of polymer to the medium and increased wettability and dispersibility of drug. Hence, F14 Solid dispersion adsorbates with the Poloxamer carrier in 1:2 ratio considered as most satisfactory among all solid dispersion adsorbates.


Author(s):  
Laxmi Raj A ◽  
Y. Shravan Kumar

The study was aimed to formulate solid dispersions of Manidipine by using different novel carriers like Labrafac PG, Kolliwax RH 40, Soluplus, Kolliwax GMS II, Kolliphor EL and SLS in drug carrier ratio by using solvent evaporation method. The formulations were characterized for physical appearance, solubility and in vitro dissolution studies. The optimized formulation was characterized and Formulation SD13 was found to be optimized one based on the solubility, dissolution and other parameters using Kolliwax GMS II and SLS.  The drug release of the optimized formulation was found to be 99.41±5.38% within 90 min. Powder X-ray diffraction studies performed on solid dispersion showed that Manidipine existed in the amorphous form within the solid dispersion formulation fabricated using the solvent evaporation process. Additionally, scanning electron microscopy studies suggested the conversion of crystalline Manidipine to an amorphous form. Therefore, the solid dispersions using Kolliwax GMS II as hydrophilic carrier in the combination of SLS can be successfully used for improvement of solubility and dissolution of Manidipine.  


Sign in / Sign up

Export Citation Format

Share Document