scholarly journals MOLECULAR DOCKING STUDIES OF ISOLATED COMPOUNDS ANDROGRAPHOLIDE AND BETULIN FROM METHANOLIC LEAVES EXTRACT OF ANDROGRAPHIS ECHIOIDES AS ALPHA-AMYLASE AND ALPHA-GLUCOSIDASE ACTIVATORS

Author(s):  
S. GURUPRIYA ◽  
L. CATHRINE

Objective: The purpose of this study is to isolate and characterize the andrographolide and betulin from methanolic leaves extract of Andrographis echioides and also used to evaluate the alpha-amylase and alpha-glucosidase inhibitory activity of isolated compounds using in silico docking studies. Methods: The isolation was done using column chromatography using gradient mobile phase. Structural elucidation was carried out on the basis of spectral analysis. In this view, andrographolide and betulin were prepared for the docking evaluation. In silico docking studies were carried out using a recent version of Auto Dock 4.2, which has the basic principle of Lamarckian genetic algorithm. Results: On the basis of the spectral data, the compounds have been established as andrographolide and betulin are being reported from this plant for the first time. The result showed that the andrographolide showed a binding affinity for amylase: (-7.9 kcal/mol) and for glucosidase (-7.2 kcal/mol) while betulin showed (-8.6 kcal/mol) and (-5.2 kcal/mol), respectively. Conclusion: Therefore, it is suggested that isolated compounds andrographolide and betulin contributed excellent α-amylase and α-glucosidase inhibitory activity because of its structural parameters. Thus, these isolated compounds can be effectively used as drugs for treating diabetes which is predicted on the basis of docking scores.

Author(s):  
Kushagra Dubey ◽  
Raghvendra Dubey ◽  
Revathi Gupta ◽  
Arun Gupta

Background: Diosmin is a flavonoid obtained from the citrus fruits of the plants. Diosmin has blood lipid lowering activities, antioxidant activity, enhances venous tone and microcirculation, protects capillaries, mainly by reducing systemic oxidative stress. Objective: The present study demonstrates the potential of Diosmin against the enzymes aldose reductase, α-glucosidase, and α-amylase involved in diabetes and its complications by in vitro evaluation and reverse molecular docking studies. Method: The assay of aldose reductase was performed by using NADPH as starting material and DL-Glyceraldehyde as a substrate. DNS method was used for alpha amylase inhibition and in alpha glucosidase inhibitory activity p-nitrophenyl glucopyranoside (pNPG) was used as substrate. The reverse molecular docking studies was performed by using Molegro software (MVD) with grid resolution of 30 Å. Result: Diosmin shows potent inhibitory effect against aldose reductase (IC50:333.88±0.04 µg/mL), α-glucosidase (IC50:410.3±0.01 µg/mL) and α-amylase (IC50: 404.22±0.02 µg/mL) respectively. The standard drugs shows moderate inhibitory activity for enzymes. The MolDock Score of Diosmin was -224.127 against aldose reductase, -168.17 against α-glucosidase and -176.013 against α-amylase respectively, which was much higher than standard drugs. Conclusion: From the result it was concluded that diosmin was a potentially inhibitor of aldose reductase, alpha amylase and alpha glucosidase enzymes then the standard drugs and it will be helpful in the management of diabetes and its complications. This will also be benevolent to decrease the socio economical burden on the middle class family of the society.


2012 ◽  
Vol 12 (4) ◽  
pp. 301-306 ◽  
Author(s):  
Arumugam Madeswaran ◽  
Muthuswamy Umamaheswari ◽  
Kuppusamy Asokkumar ◽  
Thirumalaisamy Sivashanmugam ◽  
Varadharajan Subhadradevi ◽  
...  

Author(s):  
MUTHUSWAMY UMAMAHESWARI ◽  
Preetha Prabhu ◽  
KUPPUSAMY ASOKKUMAR ◽  
THIRUMALAISAMY SIVASHANMUGAM ◽  
Varadharajan Subhadradevi ◽  
...  

2021 ◽  
Vol 18 (21) ◽  
pp. 35
Author(s):  
Manuel Rodrigues ◽  
Basavaraju Bennehalli ◽  
Vagdevi Hosadu Manjappaiah ◽  
Shruthi Anantha

In the present study, a set of different benzoxazole derivatives has been synthesized from ethyl acetoacetate, ethoxymethylene malononitrile, NaNO2, and organic acids. Analytical instruments like proton NMR (1H), carbon NMR (13C), infrared spectroscopy (IR), and LC-MS mass spectrometry were used for structural characterization. Synthesized molecules were evaluated for In-vitro antioxidant property (DPPH assay, Total antioxidant & reducing power method) and anti-diabetic property (alpha-amylase & alpha-glucosidase assay). In silico, studies against Human pancreatic alpha-amylase (PDB ID: 3BAW) have been carried out to get the binding approach of the ligand towards the protein. The results demonstrated that compounds namely 5b, 6b, 3b and 4b had potent antioxidant and anti-diabetic activity compared with ascorbic acid and acarbose. HIGHLIGHTS Anti-oxidant (DPPH assay, Total antioxidant and Reducing power) and Anti-diabetic (alpha-amylase & alpha-glucosidase assay) activities performed for synthesized molecules Sulfonamide substitutions are more potent towards biological activities In silico docking studies correlate with in vitro studies The small three-dimensional, stable structure and its ability to form hydrogen bonding the molecules show good activity towards antioxidant and anti-diabetic GRAPHICAL ABSTRACT


Author(s):  
Gejalakshmi S. ◽  
Harikrishnan N. ◽  
Anas S. Mohameid

Background: Diabetes mellitus is a metabolic condition characterized by elevated blood glucose levels in the bloodstream. It occurs due to the inadequate amount of insulin secreted in the body or resistance of insulin receptors. Objective: In the present study, for its effect on alpha-amylase and alpha-glucosidase enzymes, Oroxylum indicuma flavone glycoside was assessed using in-vitro assays by removing the respective enzymes from whole wheat and barley in conjunction with in-silico analysis. Method: in-vitro alpha amylase inhibitory activity and in-vitro alpha glucosidase inhibitory activity was performed using acarbose as a standard drug. The molecular docking study was performed using Schrodinger (Maestro V 11.5) software. The parameters glide score, Lipinski rule for drug likeliness, bioactive scoring and ADME properties were assessed in the docking study. In addition, baicalein's antioxidant function was assessed using DPPH assay, nitric oxide scavenging activity. The cytotoxicity of Oroxylum indicumwas evaluated using the Brine shrimp lethality assay. Results: The alpha-amylase assay performed showed IC50 value of 48.40 µg/ml for Oroxylum indicumwhereas alpha-glucosidase assay showed an IC50 value of 16.03 µg/ml. Oroxylum indicumshows the glide score of-5.565 with 5EOF and glide score of -5.339 with 5NN8 in the molecular docking study. The highest percentage of DPPH radical scavenging activity and nitrous oxide scavenging activity were found to be.27% at160 µg/ml and 50.02% at the concentrations of 160 µg/ml respectively. Conclusion: Based on further in vivo and clinical trials, Oroxylum indicummay be used for the management of hyperglycaemia.


Author(s):  
Benguechoua Madjda ◽  
Benarous Khedidja ◽  
Nia Samira ◽  
Yousfi Mohamed

Background: For the first time, the inhibitory effects on human salivary alpha-amylase activity of the antiinflammatory drugs: indomethacin, diclofenac sodium, ketoprofen, diclofenac potassium, diclofenac, triamcinolone acetonide and the antihistamines drugs: levocetirizine dihydrochloride, desloratadine, cycloheptadine hydrochloride has been investigated to confirm the other properties of these drugs. Objective: This study aimed to determine the effect of nine known drugs on human salivary α-amylase in vitro and the nature of interactions with structure-activity relationship using molecular docking Method: The inhibition of human salivary alpha amylase by the six anti-inflammatory and three antihistamines drugs has been carried out using the new method that has been proved in our previous work. Molecular docking has been achieved for the first time for these drugs using AutoDock Vina program. Results: The Cyproheptadine hydrochloride presented the highest inhibitory activity against α-amylase with IC50=0.7 mg/ml, while the other drugs show weak activities (IC50 > 2 mg/ml). Conclusion: We conclude that Cyproheptadine hydrochloride and which studied by docking experiments exhibited the best inhibitory activity on salivary α-amylase in vitro & in silico.


2021 ◽  
Vol 32 (4) ◽  
pp. 889-894
Author(s):  
Yudi Purnomo ◽  
Juliah Makdasari ◽  
Faiqoh Inayah Fatahillah

Abstract Objectives In food ingestion, alpha-glucosidase (α-glucosidase) and alpha-amylase (α-amylase) are enzymes that are responsible to convert a carbohydrate into glucose. Inhibition of both enzyme activities can prolong absorption of glucose in intestine and reduce post-prandial increase of blood glucose concentration, thus, it is beneficial for type-2 diabetes treatment. Traditionally, Urena lobata (U. lobata) has been used to manage diabetes, but the scientific proof of this claim remains scarce. Therefore, the objective of this study to examine the anti-diabetic potential of U. lobata leaf extract through inhibition of α-amylase and α-glucosidase. Methods U. lobata leaf extract was obtained through extraction process using ethanol and the chemical compounds in the extract were analyzed by liquid chromatography–mass spectra (LC–MS). The inhibitory activity of U. lobata on α-glucosidase and α-amylase was evaluated by in silico using docking server, whereas in vitro enzymatic assays were using para-nitrophenyl-α-d-glucopyranoside (α-NPG) and starch as substrates. The data were presented as mean ± SD and the IC50 value was calculated using SPSS. Results U. lobata leaf extract showed inhibitory activity on α-glucosidase and α-amylase with the IC50 value was 43.73 and 83.73 μg/mL, respectively, meanwhile, acarbose as standard has IC50 value at 1.14 and 0.08 μg/mL. Molecular docking study indicated β-sitosterol and stigmasterol from U. lobata extract have a huge inhibitory activity both on α-amylase and α-glucosidase based on inhibition constant (Ki) value. Conclusions Ethanolic extract of U. lobata showed inhibition activity on α-glucosidase stronger than on α-amylase as antidiabetic.


2019 ◽  
Vol 15 (2) ◽  
pp. 257-267 ◽  
Author(s):  
Paritosh Shukla ◽  
Ashok Sharma ◽  
Leena Fageria ◽  
Rajdeep Chowdhury

Background: Cancer being a deadly disease, many reports of new chemical entities are available. Pyranopyrazole (PPZ) compounds have also been disclosed as bioactive molecules but mainly as antimicrobial agents. Based on one previous report and our interest in anticancer drug design, we decided to explore PPZs as anticancer agents. To the best of our knowledge, we found that a comprehensive study, involving synthesis, in-vitro biological activity determination, exploration of the mechanism of inhibition and finally in-silico docking studies, was missing in earlier reports. This is what the present study intends to accomplish. Methods: Ten spiro and eleven non-spiro PPZ molecules were synthesized by environment-friendly multicomponent reaction (MCR) strategy. After subjecting each of the newly synthesized molecules to Hep3b hepatocellular carcinoma cell lines assay, we selectively measured the Optical Density (OD) of the most active ones. Then, the compound exhibiting the best activity was docked against human CHK- 1 protein to get an insight into the binding affinities and a quick structure activity relationship (SAR) of the PPZs. Results: The two series of spiro and non-spiro PPZs were easily synthesized in high yields using microwave assisted synthesis and other methods. Among the synthesized compounds, most compounds showed moderate to good anticancer activity against the MTT assay. After performing the absorbance studies we found that the non-spiro molecules showed better apoptosis results and appeared to bind to DNA causing disruption in their structures. Finally, the docking results of compound 5h (having N,Ndimethylamino substituted moiety) clearly showed good binding affinities as predicted by our experimental findings. Conclusion: The paper describes a comprehensive synthesis, in-vitro and docking studies done on new PPZs. The newly synthesized series of spiro and non-spiro PPZs were found to possess antineoplasmic activity as evinced by the studies on hep3b cells. Also, the UV visible absorbance study gave clues to the possible binding of these molecules to the DNA. Docking studies corroborated well with the experimental results. Thus, these new molecules appear to be potential anticancer agents, but further studies are required to substantiate and elaborate on these findings.


2019 ◽  
Vol 15 (4) ◽  
pp. 318-333
Author(s):  
Dipak P. Mali ◽  
Neela M. Bhatia

Objective:To screen the phytochemicals for phosphodiesterase 5A (PDE5A) inhibitory potential and identify lead scaffolds of antihypertensive phytochemicals using in silico docking studies.Methods:In this perspective, reported 269 antihypertensive phytochemicals were selected. Sildenafil, a PDE5A inhibitor was used as the standard. In silico docking study was carried out to screen and identify the inhibiting potential of the selected phytochemicals against PDE5A enzyme using vLife MDS 4.4 software.Results:Based on docking score, π-stacking, H-bond and ionic interactions, 237 out of 269 molecules were selected which have shown one or more interactions. Protein residue Gln817A was involved in H-boding whereas Val782A, Phe820A and Leu804A were involved in π-stacking interaction with ligand. The selected 237 phytochemicals were structurally diverse, therefore 82 out of 237 molecules with one or more tricycles were filtered out for further analysis. Amongst tricyclic molecules, 14 molecules containing nitrogen heteroatom were selected for lead scaffold identification which finally resulted in three different basic chemical backbones like pyridoindole, tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline as lead scaffolds.Conclusion:In silico docking studies revealed that nitrogen-containing tetrahydro-pyridonaphthyridine and dihydro-pyridoquinazoline tricyclic lead scaffolds have emerged as novel PDE5A inhibitors for antihypertensive activity. The identified lead scaffolds may provide antihypertensive lead molecules after its optimization.


Sign in / Sign up

Export Citation Format

Share Document