In silico and in vitro studies of the inhibitory effect of antihistamine drug Cyproheptadine hydrochloride on human salivary alpha amylase.

Author(s):  
Benguechoua Madjda ◽  
Benarous Khedidja ◽  
Nia Samira ◽  
Yousfi Mohamed

Background: For the first time, the inhibitory effects on human salivary alpha-amylase activity of the antiinflammatory drugs: indomethacin, diclofenac sodium, ketoprofen, diclofenac potassium, diclofenac, triamcinolone acetonide and the antihistamines drugs: levocetirizine dihydrochloride, desloratadine, cycloheptadine hydrochloride has been investigated to confirm the other properties of these drugs. Objective: This study aimed to determine the effect of nine known drugs on human salivary α-amylase in vitro and the nature of interactions with structure-activity relationship using molecular docking Method: The inhibition of human salivary alpha amylase by the six anti-inflammatory and three antihistamines drugs has been carried out using the new method that has been proved in our previous work. Molecular docking has been achieved for the first time for these drugs using AutoDock Vina program. Results: The Cyproheptadine hydrochloride presented the highest inhibitory activity against α-amylase with IC50=0.7 mg/ml, while the other drugs show weak activities (IC50 > 2 mg/ml). Conclusion: We conclude that Cyproheptadine hydrochloride and which studied by docking experiments exhibited the best inhibitory activity on salivary α-amylase in vitro & in silico.

Author(s):  
Gejalakshmi S. ◽  
Harikrishnan N. ◽  
Anas S. Mohameid

Background: Diabetes mellitus is a metabolic condition characterized by elevated blood glucose levels in the bloodstream. It occurs due to the inadequate amount of insulin secreted in the body or resistance of insulin receptors. Objective: In the present study, for its effect on alpha-amylase and alpha-glucosidase enzymes, Oroxylum indicuma flavone glycoside was assessed using in-vitro assays by removing the respective enzymes from whole wheat and barley in conjunction with in-silico analysis. Method: in-vitro alpha amylase inhibitory activity and in-vitro alpha glucosidase inhibitory activity was performed using acarbose as a standard drug. The molecular docking study was performed using Schrodinger (Maestro V 11.5) software. The parameters glide score, Lipinski rule for drug likeliness, bioactive scoring and ADME properties were assessed in the docking study. In addition, baicalein's antioxidant function was assessed using DPPH assay, nitric oxide scavenging activity. The cytotoxicity of Oroxylum indicumwas evaluated using the Brine shrimp lethality assay. Results: The alpha-amylase assay performed showed IC50 value of 48.40 µg/ml for Oroxylum indicumwhereas alpha-glucosidase assay showed an IC50 value of 16.03 µg/ml. Oroxylum indicumshows the glide score of-5.565 with 5EOF and glide score of -5.339 with 5NN8 in the molecular docking study. The highest percentage of DPPH radical scavenging activity and nitrous oxide scavenging activity were found to be.27% at160 µg/ml and 50.02% at the concentrations of 160 µg/ml respectively. Conclusion: Based on further in vivo and clinical trials, Oroxylum indicummay be used for the management of hyperglycaemia.


2021 ◽  
Vol 11 (2) ◽  
pp. 3470-3479

Leaves of Annona muricata are commonly used for treating diabetes. This study was conducted to investigate the molecular mechanisms involved in the antidiabetic properties of leaves of Annona muricata. Leaves of Annona muricata were extracted separately with H2O, hydromethanol (50% methanol), methanol, ethylacetate, and n-butanol. Chemical characterization of the extracts was performed by spectrophotometry and Gas chromatography-Mass Spectrometry (GC-MS) techniques. Biological activity was determined by α-amylase inhibition assays and molecular docking. The hydromethanol extract had a total phenolics concentration of 117.00±0.59 µg GAE/mg extract whereas; flavonoids were most abundant in the n-butanol extract accounting for 29.34±8.87 µg QE/mg extract. The n-butanol extract had the best FRAP value of 41.17±0.57 Vit C eqv mM, which was significantly higher than the value of the vitamin C reference. Estimated IC50 for all the extracts did not differ significantly but was significantly higher than the reference compound quercetin. All extracts inhibited α-amylase in vitro albeit significantly lower than acarbose. The hydromethanol extract had the highest inhibitory activity (53.31 ± 0.33%). Furthermore, chemical profiling of the hydromethanol extract revealed the presence of a variety of bioactive compounds. In silico analysis by molecular docking of the compounds identified by GC-MS on α-amylase revealed that the compounds had robust molecular interactions orchestrated by H-bonding and hydrophobic interactions. From the results, it can be concluded that extracts of Annona muricata possess antioxidant phytochemicals that inhibit α-amylase. Therefore, the results justify the use of the plant for the treatment of diabetes.


Author(s):  
Kushagra Dubey ◽  
Raghvendra Dubey ◽  
Revathi Gupta ◽  
Arun Gupta

Background: Diosmin is a flavonoid obtained from the citrus fruits of the plants. Diosmin has blood lipid lowering activities, antioxidant activity, enhances venous tone and microcirculation, protects capillaries, mainly by reducing systemic oxidative stress. Objective: The present study demonstrates the potential of Diosmin against the enzymes aldose reductase, α-glucosidase, and α-amylase involved in diabetes and its complications by in vitro evaluation and reverse molecular docking studies. Method: The assay of aldose reductase was performed by using NADPH as starting material and DL-Glyceraldehyde as a substrate. DNS method was used for alpha amylase inhibition and in alpha glucosidase inhibitory activity p-nitrophenyl glucopyranoside (pNPG) was used as substrate. The reverse molecular docking studies was performed by using Molegro software (MVD) with grid resolution of 30 Å. Result: Diosmin shows potent inhibitory effect against aldose reductase (IC50:333.88±0.04 µg/mL), α-glucosidase (IC50:410.3±0.01 µg/mL) and α-amylase (IC50: 404.22±0.02 µg/mL) respectively. The standard drugs shows moderate inhibitory activity for enzymes. The MolDock Score of Diosmin was -224.127 against aldose reductase, -168.17 against α-glucosidase and -176.013 against α-amylase respectively, which was much higher than standard drugs. Conclusion: From the result it was concluded that diosmin was a potentially inhibitor of aldose reductase, alpha amylase and alpha glucosidase enzymes then the standard drugs and it will be helpful in the management of diabetes and its complications. This will also be benevolent to decrease the socio economical burden on the middle class family of the society.


Author(s):  
S. GURUPRIYA ◽  
L. CATHRINE

Objective: The purpose of this study is to isolate and characterize the andrographolide and betulin from methanolic leaves extract of Andrographis echioides and also used to evaluate the alpha-amylase and alpha-glucosidase inhibitory activity of isolated compounds using in silico docking studies. Methods: The isolation was done using column chromatography using gradient mobile phase. Structural elucidation was carried out on the basis of spectral analysis. In this view, andrographolide and betulin were prepared for the docking evaluation. In silico docking studies were carried out using a recent version of Auto Dock 4.2, which has the basic principle of Lamarckian genetic algorithm. Results: On the basis of the spectral data, the compounds have been established as andrographolide and betulin are being reported from this plant for the first time. The result showed that the andrographolide showed a binding affinity for amylase: (-7.9 kcal/mol) and for glucosidase (-7.2 kcal/mol) while betulin showed (-8.6 kcal/mol) and (-5.2 kcal/mol), respectively. Conclusion: Therefore, it is suggested that isolated compounds andrographolide and betulin contributed excellent α-amylase and α-glucosidase inhibitory activity because of its structural parameters. Thus, these isolated compounds can be effectively used as drugs for treating diabetes which is predicted on the basis of docking scores.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Ananta Swargiary ◽  
Manita Daimari

Abstract Background The practice of ethnomedicine remains to be the primary source of healthcare in many parts of the world, especially among the tribal communities. However, there is a lack of scientific outlook and investigation to authenticate and validate their medicinal values. Objective The present study investigated the trace and heavy metal content, bioactive compounds, α-amylase, and α-glucosidase inhibitory activity of Rauvolfia tetraphylla and Oroxylum indicum using in vitro and in silico methods. Methods Trace and heavy metal content of Rauvolfia tetraphylla and Oroxylum indicum were detected using Atomic Absorption Spectroscopy. Bioactive compounds were analyzed and identified by the GC-MS technique. α-Amylase and α-glucosidase inhibitory activity of the plants were studied using the spectrophotometric method using UV/VIS-Spectrophotometer. In silico molecular docking was carried out in AutoDock vina and the structures visualized using PyMol and Biovia Discovery Studio software. Statistical and graphical representations were performed using Excel and OriginPro. Results The trace and heavy metallic content such as Zn, Ni, Pb, Cr, Cu, and Mn were reported from both the plant. No Cd was detected in both the plants. GC-MS analysis revealed four major compounds in R. tetraphylla and seven in O. indicum. Biochemical studies showed that the leaf extract of O. indicum posses the strongest α-amylase and α-glucosidase inhibitory activity. R. tetraphylla showed weaker enzyme inhibition. Molecular docking study revealed that three compounds from O. indicum (O2, O3, and O6) and two from R. tetraphylla (R1 and R2) showed strong binding affinity to α-amylase and α-glucosidase. However, leaf extract of O. indicum showed better binding affinity with the enzymes compared to R. tetraphylla. Conclusion Inhibition of α-amylase and α-glucosidase in an important strategy of diabetes control. The present study revealed the in vitro α-amylase and α-glucosidase inhibitory activity of Rauvolfia tetraphylla and Oroxylum indicum. In conclusion, the study identified that the leaf extract of O. indicum as a potential inhibitor of glucose metabolizing enzymes and could be a source of antidiabetic agents.


2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Damilola Alex Omoboyowa

Abstract Background Inflammation has continued to raise global challenges and Jatropha tanrogenesis (JT) is used traditionally for its management. In this study, the in silico and in vitro anti-inflammatory potential of bioactive sterols were investigated. The active compounds of ethanol extract of JT leaves were identified using Gas chromatography-mass spectrometry (GC.MS) followed by molecular docking against COX-1 and COX-2 using maestro Schrödinger and pharmacokinetic profile prediction using webserver tools. The in vitro anti-inflammatory and anti-oxidantive potentials were investigated using standard protocols. Results GC–MS analysis of ethanol extract of JT leaves revealed the presence of eight (8) compounds, the molecular docking analysis of these compounds demonstrated varying degrees of binding affinities against the target proteins. The extract exhibit concentration dependent anti-oxidant activity with IC50 of 106.383 and 6.00 Fe2+E/g for DPPH and FRAP respectively. The extract showed significant (P < 0.05) reduction in percentage inhibition of hemolysis at 200 µg/ml while non-significant (P > 0.05) increase was observed at 600 and 1000 µg/ml compared to 200 µg/ml of diclofenac sodium. At lower concentration of 25 and 50 µg/ml, percentage inhibition of albumin denaturation was significantly (P < 0.05) higher compared to 200 µg/ml of diclofenac sodium. Drug likeness prediction and ADME/toxicity screening showed that the bioactive compounds possess no side effects. Conclusion The results obtained in this study suggested that, JT leaves possess anti-inflammatory activity and could be used as a source of new drug.


2019 ◽  
Vol 17 (2) ◽  
pp. 102-113 ◽  
Author(s):  
Amit Mirani ◽  
Harish Kundaikar ◽  
Shilpa Velhal ◽  
Vainav Patel ◽  
Atmaram Bandivdekar ◽  
...  

Background:Lack of effective early-stage HIV-1 inhibitor instigated the need for screening of novel gp120-CD4 binding inhibitor. Polyphenols, a secondary metabolite derived from natural sources are reported to have broad spectrum HIV-1 inhibitory activity. However, the gp120-CD4 binding inhibitory activity of polyphenols has not been analysed in silico yet.Objectives:To establish the usage of phytopolyphenols (Theaflavin, Epigallocatechin (EGCG), Ellagic acid and Gallic acid) as early stage HIV-1 inhibitor by investigating their binding mode in reported homology of gp120-CD4 receptor complex using in silico screening studies and in vitro cell line studies.Methods:The in silico molecular docking and molecular simulation studies were performed using Schrödinger 2013-2 suite installed on Fujitsu Celsius Workstation. The in vitro cell line studies were performed in the TZM-bl cell line using MTT assay and β-galactosidase assay.Results:The results of molecular docking indicated that Theaflavin and EGCG exhibited high XP dock score with binding pose exhibiting Van der Waals interaction and hydrophobic interaction at the deeper site in the Phe43 cavity with Asp368 and Trp427. Both Theaflavin and EGCG form a stable complex with the prepared HIV-1 receptor and their binding mode interaction is within the vicinity 4 Å. Further, in vitro cell line studies also confirmed that Theaflavin (SI = 252) and EGCG (SI = 138) exert better HIV-1 inhibitory activity as compared to Ellagic acid (SI = 30) and Gallic acid (SI = 34).Conclusions:The results elucidate a possible binding mode of phytopolyphenols, which pinpoints their plausible mechanism and directs their usage as early stage HIV-1 inhibitor.


Author(s):  
Nia Samira ◽  
Benarous Khedidja ◽  
Lakaas Manel ◽  
Sadeki Israa ◽  
Yousfi Mohamed

Background: For the first time, the investigation of six anti-inflammatory drugs and six antihistaminic drugs for inhibitory activities against alpha-amylase has been evaluated using a new inhibition detection method in order to find new treatments for some diseases caused by α-amylase. Objective: The first part of this work was devoted to the evaluation of the inhibition activity of these drugs on salivary α-amylase in vitro. Then to study the nature of interactions and structure-activity relationship, using Autodockvina program for molecular docking. Method: The evaluation of the inhibitory activity of our drugs is achieved using a new method that has proved its sensitivity, quickness and effectiveness. Results : The results of this study show that the betamethasone and loratadine are potent α-amylase inhibitors with IC50 values 0.7mg/ml and 1.03 mg/ml, respectively compared to acarbose with IC50=5.6 µg/ml. Conclusion: The results showed that the loratadine and the betamethasone have a strong potential to inhibit the alpha amylase.


Author(s):  
Saranya Sivaraj ◽  
Gomathi Kannayiram ◽  
Gayathri Dasararaju

Objective: This study is aimed to evaluate the anti-diabetic effect of sequentially extracted (hexane, dichloromethane, ethyl acetate, and ethanol) Myristica fragrans houtt (mace) through in vitro and in silico studies. Methods: The in vitro anti-diabetic effect of the sequentially extracted plant were evaluated for its alpha-amylase inhibitory activity and the potential binding was studied by in silico studies using Schrödinger Maestro.Results: All extracts showed dose dependent alpha-amylase inhibitory effect. At concentration 500 µg/ml, all the extracts showed more than 60% inhibition of the alpha-amylase enzyme and the highest inhibition (81.30%) at 500 µg/ml was observed in DCM extract of mace. Potential compounds were identified by in silico molecular docking studies of alpha-amylase with phytocomponents from DCM extract. Among the top three compounds from virtual screening, induced fit docking studies revealed 2,5-bis(3,4-dimethoxyphenyl)-3,4-dimethyloxolane possessed better binding affinity when compared with the drug metformin. Conclusion: The obtained in vitro and in silico results suggest that all extracts of Myristica fragrans can be used successfully for the management of diabetes mellitus.Keywords: Myristica fragrans, Mace, Sequential extraction, Alpha-amylase, Molecular docking.


Sign in / Sign up

Export Citation Format

Share Document