scholarly journals DESIGN OF CONTROLLED RELEASE MUCOADHESIVE BUCCAL TABLETS OF IVABRADINE HCL USING SINTERING TECHNIQUE

Author(s):  
CHANDAN MOHANTY ◽  
K. V. SUBRAHMANYAM

Objective: The objective of the present work was to study the use of the sintering technique, a relatively new concept in pharmaceutical sciences, in the development of mucoadhesive buccal tablets for ivabradine Hydrochloride. Methods: The method consisted of blending drug, hydroxypropyl methylcellulose (HPMC K100M), carnauba wax, and other excipients followed by direct compression into tablets. The compressed fluffy matrices were sintered at two different constant temperatures like 50 °C and 60 °C for two different periods like 1.5 h and 3 h in a hot air oven. The effect of sintering on tensile strength, dissolution profile, and other parameters were studied. The drug-polymer-excipient compatibility was evaluated by Fourier transform Infrared (FTIR) and differential scanning calorimetric (DSC) studies. Results: The sintering condition markedly affected the drug release properties, hardness, and friability of the tablets. Based on the f2 similarity factor value, Ex-vivo mucoadhesive strength, Ex-vivo residence time, and in vitro dissolution studies, formulation F3SD was selected as an optimized formulation. Drug release followed a non-Fickian diffusion mechanism with the Higuchi model release kinetics. Stability studies of mucoadhesive buccal tablets in normal human saliva indicated the stability of the drug and buccal tablet in the oral cavity. Stability studies as per ICH guidelines revealed that optimized formulation was stable on storage conditions. Conclusion: The sintering technique provides a significant and convenient method for the development of a controlled release dosage form that can be used in the design of mucoadhesive buccal tablets of Ivabradine HCL.

Author(s):  
S. B. Shirsand ◽  
G V Wadageri ◽  
S A Raju ◽  
Gopikrishna Kolli

In present study we studied the feasibility of preparing mucoadhesive buccal delivery systems containing carvedilol to improve drug residence time on buccal mucosa and drug dissolution rate, to circumvent the first-pass metabolism and quick drug entry into the systemic circulation. Bilayer buccal tablets of carvedilol prepared using controlled release and mucoadhesive polymers (hydroxypropyl methylcellulose 15 cps, 50 cps, K4M and Carbopol 934p) along with impermeable backing layer (ethyl cellulose). 15 formulations were developed with varying concentrations of polymers. The designed tablets were evaluated for tablet size, shape, in vitro drug release, stability studies, bioavailability studies and drug-excipients interaction (FTIR). Among the 15 formulations, F151 containing hydroxypropyl methylcellulose 15 cps (48% w/w of matrix layer), Carbopol 934p (2% w/w of matrix layer) and mannitol (channeling agent, 34.5% w/w of matrix layer) was found to be promising. Dissolution tests revealed that 84.73% of carvedilol was dissolved from the formulation F151 in 8 h along with satisfactory bio adhesion strength (5.71 g). Bioavailability studies of the promising formulation were compared with that of the oral solution.  The percentage relative bioavailability of the buccal tablets was found to be 121.27%. Stability studies, on the promising formulation indicated that there are no significant changes in drug content and in vitro dissolution characteristics (p<0.05). FTIR studies show no evidence of interaction between drug and excipients. It was concluded that mucoadhesive buccal tablets of carvedilol with controlled unidirectional drug release along with satisfactory bioadhesion strength and with sufficient residence time can be successfully developed by direct compression method.


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 635
Author(s):  
Ding Li ◽  
Menglong Wang ◽  
Wen-Liang Song ◽  
Deng-Guang Yu ◽  
Sim Wan Annie Bligh

A side-by-side electrospinning process characterized by a home-made eccentric spinneret was established to produce the Janus beads-on-a-string products. In this study, ketoprofen (KET) and methylene blue (MB) were used as model drugs, which loaded in Janus beads-on-a-string products, in which polyvinylpyrrolidone K90 (PVP K90) and ethyl cellulose (EC) were exploited as the polymer matrices. From SEM images, distinct nanofibers and microparticles in the Janus beads-on-a-string structures could be observed clearly. X-ray diffraction demonstrated that all crystalline drugs loaded in Janus beads-on-a-string products were transferred into the amorphous state. ATR-FTIR revealed that the components of prepared Janus nanostructures were compatibility. In vitro dissolution tests showed that Janus beads-on-a-string products could provide typical double drugs controlled-release profiles, which provided a faster immediate release of MB and a slower sustained release of KET than the electrospun Janus nanofibers. Drug releases from the Janus beads-on-a-string products were controlled through a combination of erosion mechanism (linear MB-PVP sides) and a typical Fickian diffusion mechanism (bead KET-EC sides). This work developed a brand-new approach for the preparation of the Janus beads-on-a-string nanostructures using side-by-side electrospinning, and also provided a fresh idea for double drugs controlled release and the potential combined therapy.


Author(s):  
Dhulipalla Mounika ◽  
I. Deepika Reddy ◽  
K. Sai Chandralekha ◽  
Kapu Harika ◽  
Ramarao Nadendla ◽  
...  

Oral drug delivery is the most widely utilized route of administration among all the routes that have been explored for systemic delivery of drugs via pharmaceutical products of different dosage form. Oral route is considered most natural, uncomplicated, convenient and safe due to its ease of administration, patient acceptance and cost-effective manufacturing process. Gastroretentive drug delivery system was developed in pharmacy field and drug retention for a prolonged time has been achieved. The goal of this study was to formulate and in-vitro evaluate Ciprofloxacin HCl controlled release matrix floating tablets. Ciprofloxacin HCl floating matrix tablets were prepared by wet granulation method using two polymers such as HPMC K100M (hydrophilic polymer) and HPMC K15M. All the Evaluation parameters were within the acceptable limits. FTIR spectral analysis showed that there was no interaction between the drug and polymers. In-vitro dissolution study was carried out using USP dissolution test apparatus (paddle type) at 50 rpm. The test was carried out at 37 ± 0.5 0C in 900ml of the 0.1 N HCl buffer as the medium for eight hours. HPMC K100M shows a prolonged release when compared to HPMC K15M. These findings indicated that HPMC K100M can be used to develop novel gastroretentive controlled release drug delivery systems with the double advantage of controlled drug release at GIT pH. On comparing the major criteria in evaluation such as preformulation and in vitro drug release characteristics, the formulation F8 was selected as the best formulation, as it showed the drug content as 99±0.4% and swelling index ratio was 107.14, and in-vitro drug released 61.31±0.65% up to 8 hours. Results indicated that controlled Ciprofloxacin HCl release was directly proportional to the concentration of HPMC K100M and the release of drug followed non-Fickian diffusion. Based on all the above evaluation parameters it was concluded that the formulation batch F8 was found to be best formulation among the formulations F1 to F8 were prepared.


Author(s):  
Roshan Pradhan ◽  
Uttam Budhathoki ◽  
Panna Thapa

p>A hydroxypropyl methylcellulose (HPMC K4M, HPMC K15M, and HPMC K100M) matrix tablet containing Indomethacin along with mannitol was formulated as a function of HPMC viscosity, and was compared with the commercial products. The release characteristics of the matrix tablet were investigated in the intestinal fluid, 6.8 pH phosphate buffer for 12 hours. The formulated products and two marketed products as reference sample were studied for its different physicochemical parameters and in vitro dissolution studies. It was found that the drug release profile decreases with increase in viscosity of polymer and, with increase polymer level in the formulations. Matrix tablets formulated employing Drug:HPMC K15M:mannitol::1:0.25:1 and Drug:HPMC K15M:mannitol::1:0.25:2 gave slow release of indomethacin spread over 12 hours and their dissolution profiles were compared with the Indian marketed product. The dissolution profiles of both the formulations were similar to the dissolution profile of the marketed product, the similarity factor being 74.59 and 68.04 respectively. The dissolution profiles of formulations containing same viscosity grade of HPMC in remarkably different concentrations and different viscosity grade of HPMC in same concentrations were different. Key words: Indomethacin; Controlled release; Hydroxypropyl methyl cellulose; Mannitol; Dissolution. DOI: 10.3126/kuset.v4i1.2884 Kathmandu University Journal of Science, Engineering and Technology Vol.4, No.1, September 2008, pp 55-67


Author(s):  
M. Saquib Hasnain ◽  
Poonam Rishishwar ◽  
Sadath Ali

Objective: The objective of this paper was to prepare and evaluate floating-bioadhesive cashew gum-hydroxypropyl methylcellulose (HPMC K4M) matrix tablets for the gastro-retentive release of hydralazine HCl.Methods: The cashew gum-HPMC K4M matrix tablets of hydralazine HCl were prepared by direct compression method with the incorporation of sodium bicarbonate and citric acid as effervescent agents. Drug contents, weight variations, hardness, friability, in vitro swelling, in vitro floatation, ex vivo mucoadhesion and in vitro drug release of these matrix tablets were evaluated.Results: Drug contents, weight variations, hardness and friability of these matrix tablets were within the compendia limits. These tablets were floated well in vitro over 12 h in simulated gastric fluid (SGF, pH 1.2) with minimum lag time. The ex vivo adhesion of these matrix tablets with goat intestinal mucosa exhibited good bioadhesion in a wash off test. All these cashew gum-HPMC K4M floating-bioadhesive matrix tablets of hydralazine HCl showed in vitro sustained releases of hydralazine HCl over 12 h in SGF, pH 1.2. The in vitro hydralazine HCl followed Korsmeyer-Peppas kinetic model and anomalous (non-Fickian) diffusion mechanism. The drug-polymer compatibility analysis by FTIR spectroscopy indicated the absence of any drug-polymer interaction within this cashew gum-HPMC K4M floating-bioadhesive matrix tablets of hydralazine HCl.Conclusion: The results clearly indicate a promising potential of the use of cashew gum as matrix forming a material with HPMC K4M to prepare matrix tablets for gastro retentive delivery of hydralazine HCl through the combined approach of floatation and bioadhesion to reduce the dosing rate with better patient compliances.


2021 ◽  
Vol 14 (6) ◽  
pp. 493
Author(s):  
Enas Al-Ani ◽  
David Hill ◽  
Khalid Doudin

Oropharyngeal candidiasis (OPC) is a mucosal infection caused by Candida spp., and it is common among the immunocompromised. This condition is mainly treated using oral antifungals. Chlorhexidine (CHD) is a fungicidal and is available as a mouth wash and oral gel. It is used as an adjuvant in the treatment of OPC due to the low residence time of the current formulations. In this study, its activity was tested against C. albicans biofilm and biocompatibility with the HEK293 human cell line. Then, it was formulated as mucoadhesive hydrogel buccal tablets to extend its activity. Different ratios of hydroxypropyl methylcellulose (HPMC), poloxamer 407 (P407), and three different types of polyols were used to prepare the tablets, which were then investigated for their physicochemical properties, ex vivo mucoadhesion, drug release profiles, and the kinetics of drug release. The release was performed using Apparatus I and a controlled flow rate (CFR) method. The results show that CHD is biocompatible and effective against Candida biofilm at a concentration of 20 µg/mL. No drug excipient interaction was observed through differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). The increase in P407 and polyol ratios showed a decrease in the swelling index and an increase in CHD in vitro release. The release of CHD from the selected formulations was 86–92%. The results suggest that chlorhexidine tablets are a possible candidate for the treatment of oropharyngeal candidiasis.


2021 ◽  
Vol 20 (4) ◽  
pp. 204
Author(s):  
Ravi Manne ◽  
Agilandeswari Devarajan

Nicotinic Acid (NA) is a cholesterol lowering agent used to treat dyslipidemia. Proanthocyanidins (PC) was selected as a drug and encapsulation material in which the later has a dual property of being a polymer as well as cholesterol lowering agent. The encapsulation of NA with different concentrations of (PC) was carried out by solvent evaporation technique. The encapsulated NA was converted to granules which were then compressed into tablets by wet granulation method. It was subjected to many pre-compression parameters evaluation such as flow properties, drug content and encapsulation efficiency. The tablets were evaluated for thickness, hardness, friability, <em>in vitro</em> release studies, release kinetics and stability studies. The evaluated parameters of the formulations showed compliance with pharmacopoeial standards. The encapsulation efficiency was 99.73% and 99.52% of drug content. The FT-IR spectrum did not show interaction between drug and polymer. The drug release in pH 1.2 was lesser than in pH 6.8 buffer. The encapsulated product released drug in controlled manner in alkaline medium. The drug release was 97.1% and release was extended up to 12 hrs. The optimized batch underwent stability studies as per ICH guidelines. It can be concluded that among all the formulations the F5 can be considered as optimized formulation. The optimized formulations showed non-fickian diffusion mechanism of release.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 363-369
Author(s):  
SANJAY KUMAR GUPTA ◽  
Sradhanjali Patra ◽  
Syed Adnan Akber

The aim of this work was to develop a mucoadhesive buccal tablet for the buccal delivery of the alendronate via buccal mucosa. Buccal tablets of alendronate are designed to release drug at mucosal site for extended period of time without wash out of drug by saliva. Alendronate sodium is a bisphosphonates which has antiresorptive effect which is implicated in the prophylaxis and treatment of osteoporosis. Sodium alginate, ethyl cellulose and carbopol were selected as mucoadhesive polymers on the basis of their matrix forming properties. The objective of the study is to improve the bioavailability of alendronate buccal tablets. Extensive literature survey was done for the collection of theoretical and technical data. The methodology part includes the explanation of implemented methods in the present study. In present study, an attempt was made to design mucoadhesive buccal tablets containing alendronate, sodium alginate, ethyl cellulose and carbopol using as polymers. The tablets were prepared by direct compression method. The formulations were evaluated for hardness, thickness, friability, weight variation, drug content estimation, surface pH determination, swelling index, in vitro drug release. In vitro bioadhesive strength & in vitro release studies showed that formulation F11 showed optimum bioadhesive & exhibited optimum drug release 97.6% in 7hr. Kinetics results reveals that the F11 formulation follows zero order kinetics as correlation coefficient (r2) values are higher than that of first- order release kinetics.Optimized formula F11 show drug is released by non-Fickian diffusion mechanism. The stability studies of formulation F11 prepared mucoadhesive buccal tablets of alendronate were stable. Overall evaluations of the mucoadhesive of tablets show good mucoadhesive properties.


Sign in / Sign up

Export Citation Format

Share Document