scholarly journals REVIEW ON CUBOSOMES

Author(s):  
SARITHA M. ◽  
BOYINA HARSHINI ◽  
P. V. KAMALA KUMARI ◽  
Y. SRINIVASA RAO

Cubosomes are stable nanostructured liquid crystalline particles which are made of a specific group of amphiphilic lipids in definite proper ratio in water and then stabilised by biocompatible substances like triblock polymer. Cubosomes are curved bicontinuous cubic phase liquid crystals and they can split to form thermodynamically stable particulate dispersions. Cubosomes have biocompatible and bio-adhesive properties andare capable of loading 3D bilayered structure resembling honeycomb (carvenous) like structure by encapsulating lipophilic, hydrophobic and amphiphilic substances. Cubosomes are administered through different ways such as orally, parenterally and percutaneously. Cubosomes are versatile systems in their structure for drug delivery systems.

Author(s):  
David M. Anderson ◽  
Tomas Landh

First discovered in surfactant-water liquid crystalline systems, so-called ‘bicontinuous cubic phases’ have the property that hydropnilic and lipophilic microdomains form interpenetrating networks conforming to cubic lattices on the scale of nanometers. Later these same structures were found in star diblock copolymers, where the simultaneous continuity of elastomeric and glassy domains gives rise to unique physical properties. Today it is well-established that the symmetry and topology of such a morphology are accurately described by one of several triply-periodic minimal surfaces, and that the interface between hydrophilic and hydrophobic, or immiscible polymer, domains is described by a triply-periodic surface of constant, nonzero mean curvature. One example of such a dividing surface is shown in figure 5.The study of these structures has become of increasing importance in the past five years for two reasons:1)Bicontinuous cubic phase liquid crystals are now being polymerized to create microporous materials with monodispersed pores and readily functionalizable porewalls; figure 3 shows a TEM from a polymerized surfactant / methylmethacrylate / water cubic phase; and2)Compelling evidence has been found that these same morphologies describe biomembrane systems in a wide range of cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Yulin Chen ◽  
Ping Ma ◽  
Shuangying Gui

Lipids have been widely used as main constituents in various drug delivery systems, such as liposomes, solid lipid nanoparticles, nanostructured lipid carriers, and lipid-based lyotropic liquid crystals. Among them, lipid-based lyotropic liquid crystals have highly ordered, thermodynamically stable internal nanostructure, thereby offering the potential as a sustained drug release matrix. The intricate nanostructures of the cubic phase and hexagonal phase have been shown to provide diffusion controlled release of active pharmaceutical ingredients with a wide range of molecular weights and polarities. In addition, the biodegradable and biocompatible nature of lipids demonstrates the minimum toxicity and thus they are used for various routes of administration. Therefore, the research on lipid-based lyotropic liquid crystalline phases has attracted a lot of attention in recent years. This review will provide an overview of the lipids used to prepare cubic phase and hexagonal phase at physiological temperature, as well as the influencing factors on the phase transition of liquid crystals. In particular, the most current research progresses on cubic and hexagonal phases as drug delivery systems will be discussed.


2017 ◽  
Vol 508 ◽  
pp. 517-524 ◽  
Author(s):  
Qingtao Liu ◽  
Jinming Hu ◽  
Michael R. Whittaker ◽  
Thomas P. Davis ◽  
Ben J. Boyd

2019 ◽  
Vol 24 (7) ◽  
pp. 1405-1412 ◽  
Author(s):  
Thiagarajan Madheswaran ◽  
Murugesh Kandasamy ◽  
Rajendran JC Bose ◽  
Vengadeshprabhu Karuppagounder

2009 ◽  
Vol 18 (5) ◽  
pp. 404-411 ◽  
Author(s):  
Rita Muzzalupo ◽  
Lorena Tavano ◽  
Fiore Pasquale Nicoletta ◽  
Sonia Trombino ◽  
Roberta Cassano ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 4772
Author(s):  
Liane Meneses ◽  
Rita Craveiro ◽  
Ana Rita Jesus ◽  
Maria A. M. Reis ◽  
Filomena Freitas ◽  
...  

In this work, we propose the utilization of scCO2 to impregnate ibuprofen into the mcl-PHA matrix produced by Pseudomonas chlororaphis subs. aurantiaca (DSM 19603). The biopolymer has adhesive properties, is biocompatible and has a melting temperature of 45 °C. Several conditions, namely, pressure (15 and 20 MPa) and impregnation time (30 min, 1 h and 3 h) were tested. The highest ibuprofen content (90.8 ± 6.5 mg of ibuprofen/gPHA) was obtained at 20 MPa and 40 °C, for 1 h, with an impregnation rate of 89 mg/(g·h). The processed mcl-PHA samples suffered a plasticization, as shown by the decrease of 6.5 °C in the Tg, at 20 MPa. The polymer’s crystallinity was also affected concomitantly with the matrices’ ibuprofen content. For all the impregnation conditions tested the release of ibuprofen from the biopolymer followed a type II release profile. This study has demonstrated that the mcl-PHA produced by P. chlororaphis has a great potential for the development of novel topical drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document