scholarly journals 3D-printed N95 equivalent for personal protective equipment shortages: the Kansas City Mask

2020 ◽  
Vol 4 (4) ◽  
pp. 211-217
Author(s):  
Shiv Dalla ◽  
Brandon Bacon ◽  
Jack M Ayres ◽  
Stephen Holmstead ◽  
Alan J Ahlberg Elliot

Personal protective equipment (PPE) shortages represent a persistent and critical challenge during the COVID-19 pandemic. Communities of 3D printing hobbyists and experts responded by designing and producing homemade, 3D-printed PPE. This report discusses the design, manufacturing and validation of the Kansas City Mask (KC Mask). Once printed and assembled, masks were fit tested at Truman Medical Center in Kansas City, MO. The KC Mask was approved for use by pandemic response administration staff at the hospital. Fortunately, due to adequate PPE supply at the time of this publication, wide utilization of the KC mask has not been required. The authors endorse the KC Mask as a stopgap measure, proven to be effective in situations of critical PPE shortage based on Centers for Disease Control and Prevention (CDC) guidelines.

2020 ◽  
Author(s):  
Shiv Dalla ◽  
Brandon Bacon ◽  
Jack M Ayres ◽  
Stephen Holmstead ◽  
Alan J Ahlberg Elliot

Introduction: During the COVID-19 pandemic, the shortage of personal protective equipment (PPE) was well-reported and discussed, not only in the healthcare sector but across all of society as the demands for PPE skyrocketed. As hospitalizations for COVID-19-related illness continue to increase, many recent reports indicate the supply of PPE is persistently and significantly less than the demand. These PPE shortages encouraged communities of 3D printing experts and hobbyists to design and distribute homemade, 3D-printed PPE, including N95 mask substitutes. The mask presented, the Kansas City Mask (KC Mask), is one such product which was created from the maker community in partnership with local physicians and hospitals. This report discusses the design, manufacturing, and validation of the KC Mask design and its usage in the COVID-19 pandemic as well as future use as stopgap PPE. Methods: The KC Mask was adapted from a similar design called the Montana Mask. Mask components were 3D printed and assembled then fit tested by qualitative fit testing (QLFT) at Truman Medical Center in Kansas City, MO as a proof of concept. Results: The QLFT was successful and the KC Mask was approved for use by pandemic response administration staff at the hospital. Fortunately, the KC Mask has not required wide utilization, however, because supply chains for Kansas City area hospitals have, at the time of this publication, not yet been exhausted by the pandemic. Conclusion: The results of Truman Medical Center approval of the KC Mask are promising for this N95 stop-gap substitute. Although further analysis and study is needed for this design, persistently increasing caseloads and PPE shortages necessitate an urgent dissemination of these preliminary results. The authors do not advocate for the KC Mask as a replacement of traditional N95 masks or other PPE but do endorse the KC Mask as a stopgap measure, proven to be effective in situations of dire PPE shortage based on CDC guidelines.


2020 ◽  
Vol 4 (4) ◽  
pp. 203-209
Author(s):  
Shiv Dalla ◽  
Rohit Shinde ◽  
Jack Ayres ◽  
Stephen Waller ◽  
Jay Nachtigal

Personal protective equipment (PPE) shortages persist amidst increasing COVID-19 caseloads. These shortages encouraged some to pursue 3D printing to produce stopgap N95 alternatives. The design presented is an adapter for a commercially available snorkel mask to serve as a full-face respirator, used in dire PPE shortages or in individuals who failed fit testing. Masks were fit tested at The University of Kansas Health System in Kansas City, KS. The mask was fit tested on 22 individuals who previously failed fit testing, and all passed qualitative fit testing with the snorkel mask, adapter and viral filter apparatus. The authors endorse this design as a stopgap measure, proven to be effective in situations of dire PPE shortage or for individuals who have failed fit testing with conventional PPE.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3339 ◽  
Author(s):  
Mostapha Tarfaoui ◽  
Mourad Nachtane ◽  
Ibrahim Goda ◽  
Yumna Qureshi ◽  
Hamza Benyahia

Currently, the emergence of a novel human coronavirus disease, named COVID-19, has become a great global public health concern causing severe respiratory tract infections in humans. Yet, there is no specific vaccine or treatment for this COVID-19 where anti-disease measures rely on preventing or slowing the transmission of infection from one person to another. In particularly, there is a growing effort to prevent or reduce transmission to frontline healthcare professionals. However, it is becoming an increasingly international concern respecting the shortage in the supply chain of critical single-use personal protective equipment (PPE). To that scope, we aim in the present work to provide a comprehensive overview of the latest 3D printing efforts against COVID-19, including professional additive manufacturing (AM) providers, makers and designers in the 3D printing community. Through this review paper, the response to several questions and inquiries regarding the following issues are addressed: technical factors connected with AM processes; recommendations for testing and characterizing medical devices that additively manufactured; AM materials that can be used for medical devices; biological concerns of final 3D printed medical parts, comprising biocompatibility, cleaning and sterility; and limitations of AM technology.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ferran Fillat-Gomà ◽  
Sergi Coderch-Navarro ◽  
Laia Martínez-Carreres ◽  
Núria Monill-Raya ◽  
Toni Nadal-Mir ◽  
...  

Abstract Background To cope with shortages of equipment during the COVID-19 pandemic, we established a nonprofit end-to-end system to identify, validate, regulate, manufacture, and distribute 3D-printed medical equipment. Here we describe the local and global impact of this system. Methods Together with critical care experts, we identified potentially lacking medical equipment and proposed solutions based on 3D printing. Validation was based on the ISO 13485 quality standard for the manufacturing of customized medical devices. We posted the design files for each device on our website together with their technical and printing specifications and created a supply chain so that hospitals from our region could request them. We analyzed the number/type of items, petitioners, manufacturers, and catalogue views. Results Among 33 devices analyzed, 26 (78·8%) were validated. Of these, 23 (88·5%) were airway consumables and 3 (11·5%) were personal protective equipment. Orders came from 19 (76%) hospitals and 6 (24%) other healthcare institutions. Peak production was reached 10 days after the catalogue was published. A total of 22,135 items were manufactured by 59 companies in 18 sectors; 19,212 items were distributed to requesting sites during the busiest days of the pandemic. Our online catalogue was also viewed by 27,861 individuals from 113 countries. Conclusions 3D printing helped mitigate shortages of medical devices due to problems in the global supply chain.


2020 ◽  
Author(s):  
Ferran Fillat-Gomà ◽  
Sergi Coderch-Navarro ◽  
Laia Martínez-Carreres ◽  
Núria Monill-Raya ◽  
Toni Nadal-Mir ◽  
...  

Abstract Background: To cope with shortages of equipment during the COVID-19 pandemic, we established a nonprofit end-to-end system to identify, validate, regulate, manufacture, and distribute 3D-printed medical equipment. Here we describe the local and global impact of this system. Methods: Together with critical care experts, we identified potentially lacking medical equipment and proposed solutions based on 3D printing. Validation was based on the ISO 13485 quality standard for the manufacturing of customized medical devices. We posted the design files for each device on our website together with their technical and printing specifications and created a supply chain so that hospitals from our region could request them. We analyzed the number/type of items, petitioners, manufacturers, and catalogue views.Results: Among 33 devices analyzed, 26 (78·8%) were validated. Of these, 23 (88·5%) were airway consumables and 3 (11·5%) were personal protective equipment. Orders came from 19 (76%) hospitals and 6 (24%) other healthcare institutions. Peak production was reached 10 days after the catalogue was published. A total of 22,135 items were manufactured by 59 companies in 18 sectors; 19,212 items were distributed to requesting sites during the busiest days of the pandemic. Our online catalogue was also viewed by 27,861 individuals from 113 countries.Conclutions: 3D printing helped mitigate shortages of medical devices due to problems in the global supply chain.


Surgeries ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 244-259
Author(s):  
Andrew Hagen ◽  
Megan Chisling ◽  
Kevin House ◽  
Tal Katz ◽  
Laila Abelseth ◽  
...  

The coronavirus SARS-CoV-2 pandemic has affected over one hundred million people worldwide and has resulted in over two million deaths. In addition to the toll that coronavirus takes on the health of humans infected with the virus and the potential long term effects of infection, the repercussions of the pandemic on the economy as well as on the healthcare system have been enormous. The global supply of equipment necessary for dealing with the pandemic experienced extreme stress as healthcare systems around the world attempted to acquire personal protective equipment for their workers and medical devices for treating COVID-19. This review describes how 3D printing is currently being used in life saving surgeries such as heart and lung surgery and how 3D printing can address some of the worldwide shortage of personal protective equipment, by examining recent trends of the use of 3D printing and how these technologies can be applied during and after the pandemic. We review the use of 3D printed models for treating the long term effects of COVID-19. We then focus on methods for generating face shields and different types of respirators. We conclude with areas for future investigation and application of 3D printing technology.


2020 ◽  
Author(s):  
Ferran Fillat-Gomà ◽  
Sergi Coderch-Navarro ◽  
Laia Martínez-Carreres ◽  
Núria Monill-Raya ◽  
Toni Nadal-Mir ◽  
...  

Abstract Background: To cope with shortages of equipment during the COVID-19 pandemic, we established a nonprofit end-to-end system to identify, validate, regulate, manufacture, and distribute 3D-printed medical equipment. Here we describe the local and global impact of this system. Methods: Together with critical care experts, we identified potentially lacking medical equipment and proposed solutions based on 3D printing. Validation was based on the ISO 13485 quality standard for the manufacturing of customized medical devices. We posted the design files for each device on our website together with their technical and printing specifications and created a supply chain so that hospitals from our region could request them. We analyzed the number/type of items, petitioners, manufacturers, and catalogue views.Results: Among 33 devices analyzed, 26 (78·8%) were validated. Of these, 23 (88·5%) were airway consumables and 3 (11·5%) were personal protective equipment. Orders came from 19 (76%) hospitals and 6 (24%) other healthcare institutions. Peak production was reached 10 days after the catalogue was published. A total of 22,135 items were manufactured by 59 companies in 18 sectors; 19,212 items were distributed to requesting sites during the busiest days of the pandemic. Our online catalogue was also viewed by 27,861 individuals from 113 countries.Conclusions: 3D printing helped mitigate shortages of medical devices due to problems in the global supply chain.


2020 ◽  
Author(s):  
Sven Duda ◽  
Sascha Hartig ◽  
Karola Hagner ◽  
Lisa Meyer ◽  
Paula Wessling Intriago ◽  
...  

Background In 2020 the SARS-CoV-2 pandemic caused serious concerns about the availability of face masks. This paper studies the technical feasibility of user specific face mask production by 3D printing and the effectiveness of these masks. Material and Methods Six different face mask designs were produced by 3D printing and tested by subjective experimenter evaluation and using a respirator fit testing kit. Results were compared to the requirements as given for standard protective face masks. Results None of the printed masks came anywhere near the required standards for personal protective gear.ConclusionIn spite of their euphoric presentation in the press, none of the currently advertised 3D printed mask designs are suitable as reliable personal protective equipment.


2020 ◽  
Author(s):  
Ferran Fillat-Gomà ◽  
Sergi Coderch-Navarro ◽  
Laia Martínez-Carreres ◽  
Núria Monill-Raya ◽  
Toni Nadal-Mir ◽  
...  

Abstract Background: To cope with shortages of equipment during the COVID-19 pandemic, we established a nonprofit end-to-end system to identify, validate, regulate, manufacture, and distribute 3D-printed medical equipment. Here we describe the local and global impact of this system. Methods: Together with critical care experts, we identified potentially lacking medical equipment and proposed solutions based on 3D printing. Validation was based on the ISO 13485 quality standard for the manufacturing of customized medical devices. We posted the design files for each device on our website together with their technical and printing specifications and created a supply chain so that hospitals from our region could request them. We analyzed the number/type of items, petitioners, manufacturers, and catalogue views. Results: Among 33 devices analyzed, 26 (78·8%) were validated. Of these, 23 (88·5%) were airway consumables and 3 (11·5%) were personal protective equipment. Orders came from 19 (76%) hospitals and 6 (24%) other healthcare institutions. Peak production was reached 10 days after the catalogue was published. A total of 22,135 items were manufactured by 59 companies in 18 sectors; 19,212 items were distributed to requesting sites during the busiest days of the pandemic. Our online catalogue was also viewed by 27,861 individuals from 113 countries.Conclusions: 3D printing helped mitigate shortages of medical devices due to problems in the global supply chain.


2020 ◽  
Author(s):  
Shiv Dalla ◽  
Rohit Shinde ◽  
Jack M Ayres ◽  
Stephen Waller ◽  
Jay Nachtigal

Introduction The shortage of personal protective equipment (PPE) across the country has been widely discussed throughout the COVID-19 pandemic. Unfortunately, recent reports indicate that PPE shortages persist amidst continually increasing caseloads nationwide. Additionally, there have been reports of poor-fitting masks, a problem which is magnified by shortages. The lack of adequate access to conventional N95 masks pushed for some to pursue 3D printing and locally distributing their own manufactured masks as substitutes when PPE, including N95 masks, were not readily available. The design presented, the snorkel mask adapter, is one such design born from the local maker community in partnership with local physicians and hospitals. This article discusses the design, manufacturing, and validation of the snorkel mask adapter and its immediate use in the COVID-19 pandemic as well as future use as stopgap PPE. Methods The design presented is an adapter which can be used with a commercially available snorkel mask in order to serve as a full face respirator in either the case of a PPE shortage or more pertinently for those who are unable to pass fit testing with the available N95 respirators at their respective facilities. Mask components were 3D printed, assembled, and then fit tested by qualitative fit testing (QLFT) at The University of Kansas Health System (TUKHS) in Kansas City, KS as a proof of concept.   Results At TUKHS, the mask was fit tested on 22 individuals who required an N95 mask but were not able to pass qualitative fit testing with the masks available to them at the time. Of the 22 tested, all 22 of them were able to pass QLFT with the snorkel mask, adapter, and viral/bacterial filter combination. Conclusion The results of the fit testing at TUKHS is promising for this N95 alternative. More extensive testing can and should be done, including quantitative fit testing. Persistently increasing caseloads and PPE shortages necessitates an urgent dissemination of these preliminary results. The authors do not advocate for this design as a replacement of traditional N95 masks or other PPE but do endorse this design as a stopgap measure, proven to be effective in situations of dire PPE shortage or for individuals who have failed fit testing with conventional PPE.


Sign in / Sign up

Export Citation Format

Share Document