Intraoperative image-guided surgery in neuro-oncology with specific focus on high-grade gliomas

2017 ◽  
Vol 13 (26) ◽  
pp. 2349-2361 ◽  
Author(s):  
Syed O Mahboob ◽  
Muftah Eljamel
2003 ◽  
Vol 14 (2) ◽  
pp. 1-4 ◽  
Author(s):  
Ronald Benveniste ◽  
Isabelle M. Germano

Object Frameless image-guided stereotaxy is often used in the resection of high-grade gliomas. The authors of several studies, however, have suggested that brain shift may occur intraoperatively and result in inaccurate resection. To determine the usefulness of frameless stereotactic image-guided surgery of high-grade gliomas, the authors correlated factors predictive of brain shift, such as tumor size, periventricular location, and patient age (as an indicator of brain atrophy) with the extent of resection. Methods Inclusion criteria included the following: 1) stereotactic volumetric craniotomy for resection of tumor; 2) histologically proven high-grade glioma; 3) preoperative magnetic resonance (MR) imaging demonstration of an enhancing portion of tumor; 4) postoperative MR imaging within 48 hours to assess the extent of resection; and 5) preoperative intention to perform gross-total resection of the enhancing tumor. Fifty-four patients met these criteria between September 1997 and November 2002. Accurate resection was considered to be indicated by a lack of nodular enhancement on postoperative Gd-enhanced MR images obtained within 48 hours of surgery. Frameless stereotactic image-guided surgery resulted in the successful resection of 46 (85%) of 54 high-grade gliomas. Accurate resection was significantly more likely with tumors less than 30 ml in volume than with those greater than 30 ml (93 and 58%, respectively [p < 0.05]). In addition, small periventricular tumors were associated with significant less successful resection compared with nonperiventricular tumor (77 and 96%, respectively [p = 0.5]). Patient age did not affect the likelihood of successful resection. Conclusions Frameless image-guided stereotactic techniques can be reliably used for accurate resection of high-grade gliomas when the tumor is less than 30 ml in volume and not adjacent to the ventricular system. In cases involving tumors larger in volume or located near the ventricles, intraoperative ultrasonography or MR imaging updates should be considered.


Methods ◽  
2001 ◽  
Vol 25 (2) ◽  
pp. 186-200 ◽  
Author(s):  
Richard D. Bucholz ◽  
Kurt R. Smith ◽  
Keith A. Laycock ◽  
Leslie L. McDurmont

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xiaojing Shi ◽  
Caiguang Cao ◽  
Zeyu Zhang ◽  
Jie Tian ◽  
Zhenhua Hu

AbstractCerenkov luminescence imaging (CLI) is a novel optical imaging technique that has been applied in clinic using various radionuclides and radiopharmaceuticals. However, clinical application of CLI has been limited by weak optical signal and restricted tissue penetration depth. Various fluorescent probes have been combined with radiopharmaceuticals for improved imaging performances. However, as most of these probes only interact with Cerenkov luminescence (CL), the low photon fluence of CL greatly restricted it’s interaction with fluorescent probes for in vivo imaging. Therefore, it is important to develop probes that can effectively convert energy beyond CL such as β and γ to the low energy optical signals. In this study, a Eu3+ doped gadolinium oxide (Gd2O3:Eu) was synthesized and combined with radiopharmaceuticals to achieve a red-shifted optical spectrum with less tissue scattering and enhanced optical signal intensity in this study. The interaction between Gd2O3:Eu and radiopharmaceutical were investigated using 18F-fluorodeoxyglucose (18F-FDG). The ex vivo optical signal intensity of the mixture of Gd2O3:Eu and 18F-FDG reached 369 times as high as that of CLI using 18F-FDG alone. To achieve improved biocompatibility, the Gd2O3:Eu nanoparticles were then modified with polyvinyl alcohol (PVA), and the resulted nanoprobe PVA modified Gd2O3:Eu (Gd2O3:Eu@PVA) was applied in intraoperative tumor imaging. Compared with 18F-FDG alone, intraoperative administration of Gd2O3:Eu@PVA and 18F-FDG combination achieved a much higher tumor-to-normal tissue ratio (TNR, 10.24 ± 2.24 vs. 1.87 ± 0.73, P = 0.0030). The use of Gd2O3:Eu@PVA and 18F-FDG also assisted intraoperative detection of tumors that were omitted by preoperative positron emission tomography (PET) imaging. Further experiment of image-guided surgery demonstrated feasibility of image-guided tumor resection using Gd2O3:Eu@PVA and 18F-FDG. In summary, Gd2O3:Eu can achieve significantly optimized imaging property when combined with 18F-FDG in intraoperative tumor imaging and image-guided tumor resection surgery. It is expected that the development of the Gd2O3:Eu nanoparticle will promote investigation and application of novel nanoparticles that can interact with radiopharmaceuticals for improved imaging properties. This work highlighted the impact of the nanoprobe that can be excited by radiopharmaceuticals emitting CL, β, and γ radiation for precisely imaging of tumor and intraoperatively guide tumor resection.


Head & Neck ◽  
2021 ◽  
Author(s):  
Sarah Y. Bessen ◽  
Xiaotian Wu ◽  
Michael T. Sramek ◽  
Yuan Shi ◽  
David Pastel ◽  
...  

2014 ◽  
Vol 39 (13) ◽  
pp. 3830 ◽  
Author(s):  
Nan Zhu ◽  
Suman Mondal ◽  
Shengkui Gao ◽  
Samuel Achilefua ◽  
Viktor Gruev ◽  
...  

2007 ◽  
Author(s):  
Peng Cheng ◽  
Luis Ibanez ◽  
David Gobbi ◽  
Kevin Gary ◽  
Stephen Aylward ◽  
...  

1999 ◽  
Vol 280 (6) ◽  
pp. 62-69 ◽  
Author(s):  
W. Eric L. Grimson ◽  
Ron Kikinis ◽  
Ferenc A. Jolesz ◽  
Peter McL. Black

Sign in / Sign up

Export Citation Format

Share Document