scholarly journals Determining Process Lethality of Escherichia Coli O157:H7 and Salmonella in Heat Treated, Rendered Oil

2017 ◽  
Vol 1 (2) ◽  
pp. 124-124
Author(s):  
R. L. Murphy ◽  
D. R. Woerner ◽  
I. Geornaras ◽  
J. N. Martin ◽  
H. Yang ◽  
...  
1993 ◽  
Vol 56 (7) ◽  
pp. 568-572 ◽  
Author(s):  
ELSA A. MURANO ◽  
MERLE D. PIERSON

Escherichia coli serotype O157:H7 cells were grown at 30°C for 6 h and subjected to a heat stress, or heat shock, at 42°C for 5 min. Heat-shocked and nonheat-shocked controls were heat treated at 55°C for up to 60 min. The number of injured cells was significantly higher in heat-shocked cells than in controls, and the rate of release of cell components was higher in heat-shocked cells. Anaerobic plating resulted in higher recovery of injured cells, when compared with aerobic plating, regardless of whether the cells were heat shocked or not. In addition, heat shocking resulted in lower catalase and superoxide dismutase activities when compared with controls. It also resulted in greater survivability after exposure to hydrogen peroxide, suggesting that heat shocking somehow enables the cells to survive exposure to toxic substances in addition to heat. The heat-shock response, coupled with anaerobic conditions, increased the ability of E. coli O157:H7 cells to recover after a heat treatment. Thus, heat shock did not afford protection to the cells against injury, but rather enhanced their ability to recover during storage.


1992 ◽  
Vol 55 (5) ◽  
pp. 379-381 ◽  
Author(s):  
MARLENE M. AROCHA ◽  
MELINDA MCVEY ◽  
SUSAN D. LODER ◽  
JOHN H. RUPNOW ◽  
LLOYD BULLERMAN

The ability of enterohemorrhagic Escherichia coli O157:H7 to grow and survive during the manufacture of Cottage cheese was determined. Pasteurized skim milk artificially contaminated with E. coli O157:H7 was used to make Cottage cheese by the washed curd method. E. coli O157:H7 was enumerated by surface plating samples on MacConkey sorbitol agar with 5-bromo-4-chloro-3-indoxyl-β-D-glucuronic acid cyclohexylammonium salt (MSA-BCIG) and incubating at 42°C for 24 h. The heat treated samples were previously inoculated into a modified EC broth with novobiocin and incubated static at 35°C for 24 h. Sorbitol and β-glucuronidase negative colonies were picked from MSA-BCIG, spread on Levine eosin methylene blue agar plates and phenol red sorbitol agar plates with 4-methylumbelliferyl-β-D-glucuronide (PRS-MUG) added for confirmation. E. coli O157:H7 increased 100-fold in numbers during the manufacturing process, but death occurred during cooking of the curd and whey. The pH and acidity did not halt the growth of this pathogen during the manufacture of the cheese; furthermore, the values of these parameters were the same between the contaminated and control samples.


2012 ◽  
Vol 75 (12) ◽  
pp. 2208-2212 ◽  
Author(s):  
PETER M. A. TOIVONEN ◽  
CHANGWEN LU ◽  
SUSAN BACH ◽  
PASCAL DELAQUIS

Wounding of lettuce tissue has been examined previously by others in regard to browning reactions, and treatments to modulate wounding responses were evaluated for reduction of browning. However, the wounding process also releases oxygen radicals such as hydrogen peroxide. This study focused on the evaluation of two treatments that reduce hydrogen peroxide at cut surfaces (heat treatment and pyruvate addition) and one treatment that enhances its production (infusion with the fungal elicitor harpin). Hydrogen peroxide changes in response to treatment were also associated with resultant survival of Escherichia coli O157:H7, which was inoculated onto the lettuce before cutting. Heat-treated lettuce produced significantly less hydrogen peroxide, and microbial analysis showed that E. coli O157:H7 survival on packaged, heat-treated lettuce was higher than on non–heat-treated controls. Lettuce was also cut under a solution of sodium pyruvate (a well-known hydrogen peroxide quencher), and E. coli O157:H7 survival was found to be enhanced with that treatment. When lettuce was infused with harpin before cutting, hydrogen peroxide production was enhanced, and this was associated with reduced survival of E. coli O157:H7. These results collectively support the hypothesis that modulation of wound-generated hydrogen peroxide can have an influence on E. coli O157:H7 survival on cut and packaged romaine lettuce.


2006 ◽  
Vol 148 (6) ◽  
pp. 289-295 ◽  
Author(s):  
C. Zweifel ◽  
M. Kaufmann ◽  
J. Blanco ◽  
R. Stephan

2020 ◽  
Vol 23 (3) ◽  
pp. 310-318
Author(s):  
K. Koev ◽  
T. Stoyanchev ◽  
G. Zhelev ◽  
P. Marutsov ◽  
K. Gospodinova ◽  
...  

The purpose of this study was to detect the presence of shiga-toxin producing Escherichia coli (STEC) in faeces of healthy dairy cattle and to determine the sensitivity of isolates to several anti­microbial drugs. A total of 1,104 anal swab samples originating from 28 cattle farms were examined. After the primary identification, 30 strains were found to belong to serogroup О157. By means of conventional multiplex PCR, isolates were screened for presence of resistance genes stx1, stx2 and eaeА. Twenty-nine strains possesses amplicons with a size corresponding to genes stx2 and eaeA, one had amplicons also for the stx1 gene and one lacked amplicons of all three genes. Twenty-eight strains demonstrated amplicons equivalent to gene H7. The results from phenotype analysis of resistance showed preserved sensitivity to ceftriaxone, ceftazidime, cefotaxime, cephalothin, streptomycin, gentamicin, tetracycline, enrofloxacin and combinations sulfamethoxazole/trimethoprim and amoxicillin/clavulanic acid. Sensitivity to ampicillin was relatively preserved, although at a lower extent.


Sign in / Sign up

Export Citation Format

Share Document