spoilage yeasts
Recently Published Documents


TOTAL DOCUMENTS

170
(FIVE YEARS 38)

H-INDEX

34
(FIVE YEARS 5)

2021 ◽  
Author(s):  
G. Péter

Abstracts Zygosaccharomyces species are among the most problematic food spoilage yeasts. The two most infamous species are Zygosaccharomyces balii and Zygosaccharomyces rouxii, although they may also take a positive role during the production of some fermented foods. DNA sequence based yeast identification aided by freely available reference databases of barcoding DNA sequences has boosted the description rate of novel yeast species in the last two decades. The genus Zygosaccharomyces has been considerably expanded as well. Especially the number of the extremely osmotolerant Zygosaccharomyces species, related to Z. rouxii and regularly found in high-sugar foods, has enlarged. A brief account of recent developments in the taxonomy and biodiversity of this important food associated genus is given in this review.


2021 ◽  
Vol 7 (10) ◽  
pp. 872
Author(s):  
Laura Nißl ◽  
Florian Westhaeuser ◽  
Matthias Noll

Food safety is important to reduce food spoilage microorganisms and foodborne pathogens. However, food safety is challenging, as customers’ demand for natural preservatives is increasing. Essential oils (EOs) and their components (EOCs) are alternative antibacterial and antimycotic food additives. In this study, the minimal inhibitory concentrations (MIC) of 11 different EOCs against 13 food spoilage molds and yeasts were investigated via the microdilution method. Cinnamaldehyde (CA) revealed the lowest MIC for all tested strains and all EOCs (32.81–328.1 µg ml−1). However, CA is organoleptic and was therefore combined with other EOCs via the checkerboard method. Overall, 27 out of 91 combinations showed a synergistic effect, and both respective EOC concentrations could be reduced by maintaining MIC. Thereby, the combination with citral or citronellal showed promising results. The concentration-dependent effect of CA was studied in further detail on Saccharomyces cerevisiae, with CA causing delayed growth-kinetics and reduced total cell numbers. In addition, flow cytometric measurements combined with live–dead staining indicate the fungicidal effect of CA, due to decreasing total cell numbers and increasing relative amount of propidium iodide-positive cells. In this study, we demonstrated that CA is a potent candidate for the use as a natural preservative against food-relevant mold and yeasts showing fungistatic and fungicidal effects. Therefore, CA and EOC combinations with respective lower EOC concentrations reduce organoleptic reservations, which ease their application in the food industry.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2175
Author(s):  
Filipa V. M. Silva ◽  
Sanelle van Wyk

SO2 is an antioxidant and selective antimicrobial additive, inhibiting the growth of molds in the must during the early stages of wine production, as well as undesirable bacteria and yeasts during fermentation, thus avoiding microbial spoilage during wine production and storage. The addition of SO2 is regulated to a maximum of 150–350 ppm, as this chemical preservative can cause adverse effects in consumers such as allergic reactions. Therefore, the wine industry is interested in finding alternative strategies to reduce SO2 levels, while maintaining wine quality. The use of non-thermal or cold pasteurization technologies for wine preservation was reviewed. The effect of pulsed electric fields (PEF), high pressure processing (HPP), power ultrasound (US), ultraviolet irradiation (UV), high pressure homogenization (HPH), filtration and low electric current (LEC) on wine quality and microbial inactivation was explored and the technologies were compared. PEF and HPP proved to be effective wine pasteurization technologies as they inactivate key wine spoilage yeasts, including Brettanomyces, and bacteria in short periods of time, while retaining the characteristic flavor and aroma of the wine produced. PEF is a promising technology for the beverage industry as it is a continuous process, requiring only microseconds of processing time for the inactivation of undesirable microbes in wines, with commercial scale, higher throughput production potential.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4571
Author(s):  
Antonio Morata ◽  
Iris Loira ◽  
Carmen González ◽  
Carlos Escott

Off-flavors produced by undesirable microbial spoilage are a major concern in wineries, as they affect wine quality. This situation is worse in warm areas affected by global warming because of the resulting higher pHs in wines. Natural biotechnologies can aid in effectively controlling these processes, while reducing the use of chemical preservatives such as SO2. Bioacidification reduces the development of spoilage yeasts and bacteria, but also increases the amount of molecular SO2, which allows for lower total levels. The use of non-Saccharomyces yeasts, such as Lachancea thermotolerans, results in effective acidification through the production of lactic acid from sugars. Furthermore, high lactic acid contents (>4 g/L) inhibit lactic acid bacteria and have some effect on Brettanomyces. Additionally, the use of yeasts with hydroxycinnamate decarboxylase (HCDC) activity can be useful to promote the fermentative formation of stable vinylphenolic pyranoanthocyanins, reducing the amount of ethylphenol precursors. This biotechnology increases the amount of stable pigments and simultaneously prevents the formation of high contents of ethylphenols, even when the wine is contaminated by Brettanomyces.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 134
Author(s):  
Cristian Varela ◽  
Kathleen Cuijvers ◽  
Anthony Borneman

Most modern fermented foods and beverages are produced in fit-for-purpose facilities which are designed to ensure not only a reliable product, but also one safe for consumption. Despite careful hygiene, microorganisms can colonise these facilities and establish resident populations that can potentially contribute to the fermentation process. Although some microorganisms may not negatively affect the final product, spoilage microorganisms can be detrimental for quality, generating substantial economic losses. Here, amplicon-based phylotyping was used to map microbial communities within an Australian winery, before, during and after the 2020 vintage. Resident bacterial and yeast populations were shown to change over time, with both relative abundance and location within the winery varying according to sampling date. The bacterial family Micrococcaceae, and the genera Sphingomonas and Brevundimonas were the most abundant bacterial taxonomies, while Naganishia, Pyrenochaeta and Didymella were the most abundant fungal genera. Mapping the spatial distributions of the microbial populations identified the main locations that harboured these resident microorganisms, that include known wine spoilage yeasts and bacteria. Wine spoilage microorganisms, including the genefugura Lactobacillus, Acetobacter, Gluconobacter and Brettanomyces showed very low relative abundance and were found only in a couple of locations within the winery. Microbial populations detected in this facility were also compared to the resident microbiota identified in other fermented food facilities, revealing that microbial population structures may reflect the nature of the product created in each facility.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1652
Author(s):  
Bernard Gitura Kimani ◽  
Erika Beáta Kerekes ◽  
Csilla Szebenyi ◽  
Judit Krisch ◽  
Csaba Vágvölgyi ◽  
...  

Phenolic compounds are natural substances that can be obtained from plants. Many of them are potent growth inhibitors of foodborne pathogenic microorganisms, however, phenolic activities against spoilage yeasts are rarely studied. In this study, planktonic and biofilm growth, and the adhesion capacity of Pichia anomala, Saccharomyces cerevisiae, Schizosaccharomyces pombe and Debaryomyces hansenii spoilage yeasts were investigated in the presence of hydroxybenzoic acid, hydroxycinnamic acid, stilbene, flavonoid and phenolic aldehyde compounds. The results showed significant anti-yeast properties for many phenolics. Among the tested molecules, cinnamic acid and vanillin exhibited the highest antimicrobial activity with minimum inhibitory concentration (MIC) values from 500 µg/mL to 2 mg/mL. Quercetin, (−)-epicatechin, resveratrol, 4-hydroxybenzaldehyde, p-coumaric acid and ferulic acid were also efficient growth inhibitors for certain yeasts with a MIC of 2 mg/mL. The D. hansenii, P. anomala and S. pombe biofilms were the most sensitive to the phenolics, while the S. cerevisiae biofilm was quite resistant against the activity of the compounds. Fluorescence microscopy revealed disrupted biofilm matrix on glass surfaces in the presence of certain phenolics. Highest antiadhesion activity was registered for cinnamic acid with inhibition effects between 48% and 91%. The active phenolics can be natural interventions against food-contaminating yeasts in future preservative developments.


Sign in / Sign up

Export Citation Format

Share Document