scholarly journals Complement peptide receptors in GtoPdb v.2021.3

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Antonia Cianciulli ◽  
Liam Coulthard ◽  
Owen Hawksworth ◽  
John D. Lee ◽  
Xaria X. Li ◽  
...  

Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors [107]) are activated by the endogenous ~75 amino-acid anaphylatoxin polypeptides C3a and C5a, generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3aR, C5aR1 and C5aR2), causing cell recruitment and triggering cellular degranulation that contributes to local inflammation.

2019 ◽  
Vol 2019 (4) ◽  
Author(s):  
Antonia Cianciulli ◽  
Liam Coulthard ◽  
Owen Hawksworth ◽  
John D. Lee ◽  
Vincenzo Mitolo ◽  
...  

Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors [98]) are activated by the endogenous ~75 amino-acid anaphylatoxin polypeptides C3a and C5a, generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3aR and C5aR), causing cell activation and triggering cellular degranulation that contributes to the local inflammation.


2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Antonia Cianciulli ◽  
Liam Coulthard ◽  
Owen Hawksworth ◽  
John D. Lee ◽  
Xiang X. Li ◽  
...  

Complement peptide receptors (nomenclature as agreed by the NC-IUPHAR subcommittee on Complement peptide receptors [103]) are activated by the endogenous ~75 amino-acid anaphylatoxin polypeptides C3a and C5a, generated upon stimulation of the complement cascade. C3a and C5a exert their functions through binding to their receptors (C3aR and C5aR), causing cell activation and triggering cellular degranulation that contributes to the local inflammation.


1968 ◽  
Vol 243 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
L J Elsas ◽  
I Albrecht ◽  
L E Rosenberg

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A15-A15
Author(s):  
Fabiane Sônego ◽  
Gaelle Martin ◽  
Chloé Beuraud ◽  
Audrey Beringer ◽  
Yacine Cherifi ◽  
...  

BackgroundImmuno-intervention through targeting of activating and inhibitory immune checkpoints (ICP), has shown promising results in the clinic over the last years. To facilitate these researches, mouse models expressing humanized ICP instead of their mouse counterparts were developed. Herein, we describe a novel CD28 humanized mouse model (hCD28 model), designed to test compounds targeting human CD28 (hCD28).MethodsHuman and mouse CD28 (mCD28) have different signalling responses, with hCD28 being known for inducing higher levels of pro-inflammatory cytokines upon stimulation with ligands/superagonists. This can be explained by the expression of CD28i, a hCD28 amplifier isoform which is not found in mouse. Additionally, evidences suggested that the different signalling between human and mCD28 relies on one amino acid change in the intracellular domain (ICD).1 Because the hCD28 model was developed to assess hCD28-targeting therapeutics, we decided to keep the expression of both canonical and CD28i isoforms to avoid undermining the biological effects of the testing antibodies. Although keeping the human ICD could favour the evaluation of cytokine production and therefore the safety of the test therapeutics, we decided to keep the mouse ICD to enable a proper interaction of CD28 with its signalling partners, allowing a physiological stimulation of CD28 in efficacy studies.Results hCD28 mice express hCD28 on T cells and the frequency of CD3 T cells is comparable in both WT and hCD28 mice. Stimulation of hCD28 mice-isolated T cells with hCD28 ligands and agonist antibodies resulted in T cell proliferation and cytokine production, suggesting that hCD28 is functional in mouse cells. MC38 uptake rate and kinetic of growth were comparable in WT and hCD28 mice, suggesting no major defect in the immune response in the hCD28 mice. Importantly, splenocytes and tumor draining lymph nodes cells isolated from tumor-bearing hCD28 mice showed higher production of IL-2 and IFN-gamma upon in vitro re-challenged with MC38 when compared to WT cells. Since the frequency of CD3 cells (Treg, CD4+ and CD8+) is comparable to WT mice, this could be explained by the expression of the amplifier CD28i isoform, which is absent in WT mice.ConclusionsThe hCD28 model described here supports the efficacy assessment of hCD28-targeting biologics, enabling PK/PD studies as hCD28 expression levels and pattern are physiological. However, after careful consideration of the CD28 biology, we decided to keep the mouse ICD, although it triggers lower pro-inflammatory cytokine production than CD28 human ICD. As such, this model is not suitable for toxicology/safety studies.ReferencePorciello N, Grazioli P, Campese AF, et al. A non-conserved amino acid variant regulates differential signalling between human and mouse CD28. Nat Commun 2018; 9:1–16.


1993 ◽  
Vol 264 (1) ◽  
pp. R41-R50 ◽  
Author(s):  
A. Vardhan ◽  
A. Kachroo ◽  
H. N. Sapru

Stimulation of carotid body chemoreceptors by saline saturated with 100% CO2 elicited an increase in mean arterial pressure, respiratory rate, tidal volume, and minute ventilation (VE). Microinjections of L-glutamate into a midline area 0.5-0.75 mm caudal and 0.3-0.5 mm deep with respect to the calamus scriptorius increased VE. Histological examination showed that the site was located in the commissural nucleus of the nucleus tractus solitarii (NTS). The presence of excitatory amino acid receptors [N-methyl-D-aspartic acid (NMDA); kainate, quisqualate/alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and trans 1-amino-cyclopentane-trans-1,3-dicarboxylic acid (ACPD)] in this area was demonstrated by microinjections of appropriate agonists. Simultaneous blockade of NMDA and non-NMDA receptors by combined injections of DL-2-aminophosphonoheptanoate (AP-7; 1 nmol) and 6,7-dinitro-quinoxaline-2,3-dione (DNQX; 1 nmol) abolished the responses to stimulation of carotid body on either side. Combined injections of AP-7 and DNQX did not produce a nonspecific depression of neurons because the responses to another agonist, carbachol, remained unaltered. Inhibition of the neurons in the aforementioned area with microinjections of muscimol (which hyperpolarizes neuronal cell bodies but not fibers of passage) also abolished the responses to subsequent carotid body stimulation on either side.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document