scholarly journals Breakup of a liquid column jet in a surrounding gas flowing through a coaxial cylindrical sheath

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Takao Yoshinaga
Keyword(s):  
Author(s):  
Jéssica Carolina Barbosa Vieira ◽  
Thiago da Silva ◽  
Carlos Alberto Bavastri

2019 ◽  
Vol 14 (2) ◽  
pp. 82-88
Author(s):  
M.V. Alekseev ◽  
I.S. Vozhakov ◽  
S.I. Lezhnin

A numerical simulation of the process of the outflow of gas under pressure into a closed container partially filled with liquid was carried out. For comparative theoretical analysis, an asymptotic model was used with assumptions about the adiabaticity of the gas outflow process and the ideality of the liquid during the oscillatory one-dimensional motion of the liquid column. In this case, the motion of the liquid column and the evolution of pressure in the gas are determined by the equation of dynamics and the balance of enthalpy. Numerical simulation was performed in the OpenFOAM package using the fluid volume method (VOF method) and the standard k-e turbulence model. The evolution of the fields of volumetric gas content, velocity, and pressure during the flow of gas from the high-pressure chamber into a closed channel filled with liquid in the presence of a ”gas blanket“ at the upper end of the channel is obtained. It was shown that the dynamics of pulsations in the gas cavity that occurs when the gas flows into the closed region substantially depends on the physical properties of the liquid in the volume, especially the density. Numerical modeling showed that the injection of gas into water occurs in the form of a jet outflow of gas, and for the outflow into liquid lead, a gas slug is formed at the bottom of the channel. Satisfactory agreement was obtained between the numerical calculation and the calculation according to the asymptotic model for pressure pulsations in a gas projectile in liquid lead. For water, the results of calculations using the asymptotic model give a significant difference from the results of numerical calculations. In all cases, the velocity of the medium obtained by numerical simulation and when using the asymptotic model differ by an order of magnitude or more.


2000 ◽  
Vol 55 (11) ◽  
pp. 2073-2088 ◽  
Author(s):  
A Mate ◽  
O Masbernat ◽  
C Gourdon
Keyword(s):  

1992 ◽  
Vol 59 (1) ◽  
pp. 191-195 ◽  
Author(s):  
Helmut F. Bauer

The response of a cylindrical liquid column consisting of an incompressible and frictionless liquid has been investigated for a pitching bridge bottom. The response of the free surface and velocity distribution has been determined and numerically evaluated. In addition, the transient behavior of the column has been treated. Since for nonviscous liquid the response exhibits at the resonances singularity, a semi-empirical damping was introduced in the resonance terms. Its magnitude has to be determined by experiments.


2013 ◽  
Vol 773 ◽  
pp. 749-754
Author(s):  
Zhen Ya Duan ◽  
Fu Lin Zheng ◽  
Hui Ling Shi ◽  
Jun Mei Zhang

In this paper, the numerical model of multi-stage liquid column scrubber was established. The flow field of liquid column scrubber with different inlet structure was respectively simulated by a commercial CFD code, Fluent. Considering the distribution characteristics of static pressure and velocity in the scrubber, this inlet type, single horizontal gas inlet with a notch at the bottom, is regarded as the most reasonable structure. On one hand, that structure has uniform distribution of static pressure. On the other hand, the velocity profile of its field presents saddle shape, i.e. the low central velocity exists between two peaks, which could contribute to weakening wall-flow phenomenon and obtaining uniform gas-liquid distribution.


1988 ◽  
Vol 58 (4) ◽  
pp. 276-284 ◽  
Author(s):  
W. Eidel ◽  
H. F. Bauer

Sign in / Sign up

Export Citation Format

Share Document