scholarly journals Numerical investigation of evaporation phenomena of liquid fuel jet atomization in crossflow

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Kenya Kitada ◽  
Jian Wen ◽  
Ryoichi Kurose
2021 ◽  
pp. 1-36
Author(s):  
Sheikh Salauddin ◽  
Wilmer Flores ◽  
Michelle Otero ◽  
Bernhard Stiehl ◽  
Kareem Ahmed

Abstract Liquid fuel jet in Crossflow (LJIC) is a vital atomization technique significant to the aviation industry. The hydrodynamic instability mechanisms that drive a primary breakup of a transverse jet are investigated using modal and traveling wavelength analysis. This study highlights the primary breakup mechanisms for aviation fuel Jet-A, utilizing a method that could be applied to any liquid fuel. Mathematical decomposition techniques known as POD (Proper Orthogonal Decomposition) and Robust MrDMD (Multi-Resolution Dynamic Mode Decomposition) are used together to identify dominant instability flow dynamics associated with the primary breakup mechanism. Implementation of the Robust MrDMD method deconstructs the nonlinear dynamical systems into multiresolution time-scaled components to capture the intermittent coherent structures. The Robust MrDMD, in conjunction with the POD method, is applied to data points taken across the entire spray breakup regimes: enhanced capillary breakup, bag breakup, multimode breakup, and shear breakup. The dominant frequencies of breakup mechanisms are extracted and identified. These coherent structures are classified with an associated time scale and Strouhal number. Three primary breakup mechanisms, namely ligament shedding, bag breakup, and shear breakup, were identified and associated with the four breakup regimes outlined above. Further investigation portrays these breakup mechanisms to occur in conjunction with each other in each breakup regime, excluding the low Weber number Enhanced Capillary Breakup regime. Spectral analysis of the Robust MrDMD modes' entire temporal window reveals that while multiple breakup mechanisms are convolved, there is a dominant breakup route for each breakup regime. An associated particular traveling wavelength analysis further investigates each breakup mechanism. Lastly, this study explores the effects of an increased momentum flux ratio on each breakup mechanism associated with a breakup regime.


Author(s):  
Кулманаков ◽  
S. Kulmanakov ◽  
Кирюшин ◽  
I. Kiryushin

The article contains a description of the experimental setup and the stent-speed video atomized fuel stream, applicable for the study of the jet sputtering process liquid fuel. In axial section shows information about the dynamics of the area of the normalized luminance zones in the diesel fuel jet injection pressure range of 60 MPa to 180 MPa


2016 ◽  
Author(s):  
D. A. Vnuchkov ◽  
D. G. Nalivaychenko ◽  
A. V. Starov ◽  
V. I. Zvegintsev

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Raghav Sood ◽  
Preetam Sharma ◽  
Vaibhav Kumar Arghode

Abstract This paper deals with an experimental investigation of a novel and simple reverse flow combustor, operated stably with a liquid fuel (ethanol) for heat release intensities ranging from 16 to 25 MW/(m3·atm) with very low NOx and CO emissions. The liquid fuel is injected coaxially with the air jet along the centerline of the combustor. The high velocity air annulus helps in primary breakup of the liquid fuel jet. Air injection along the combustor centerline results in a strong peripheral vortex inside the combustor leading to enhanced product gas recirculation, internal preheating of the reactants, and stabilization of reaction zones. Single-digit NOx emissions were obtained for both coaxial fuel injection (non-premixed) and a premixed–prevaporized (PP) cases for all operating conditions. CO emissions for both the modes were less than 100 ppm (ϕ < 0.75). CH* chemiluminescence images revealed two distinct flame structures for coaxial fuel injection case. A single flame structure for PP case was observed extending from the injector exit to the bottom of the combustor. The instantaneous (spatially averaged) CH* intensity fluctuations were significantly lower for the PP case as compared to the coaxial fuel injection case.


Author(s):  
Riccardo Baudille ◽  
Gino Bella ◽  
Rossella Rotondi

In multi hole Diesel injectors, cavitation can offer advantages in the development on the fuel spray, because the primary atomization of the liquid fuel jet can be improved due to the enhanced turbulence. Several multi dimensional models of cavitating nozzle flow have been developed in order to provide information about the flow at the exit of a cavitating orifice. In this paper an analytical one-dimensional model, by Sarre et al. [1], to predict the flow conditions at the exit of a cavitating nozzle, is analyzed. The results obtained are compared with the ones obtained using the multi dimensional code Fluent in order to investigate the predictive capability of the one-dimensional code. The model provides initial conditions for multidimensional spray modeling: the effective injection velocity and the initial drop or injected liquid ‘blob’ size. The simulations were performed using an improved version of the KIVA3V code, in which an hybrid break up model, developed by the authors, is used and the results in terms of penetrations and global SMD are compared with the experimental ones. The one dimensional model predicts reasonable discharge coefficient for sharp injector geometry. Where the r/d ratio increases and the cavitation effects appear not clearly marked there are same discrepancies between the one dimensional and the multidimensional approach.


ARS Journal ◽  
1959 ◽  
Vol 29 (10) ◽  
pp. 745-749
Author(s):  
A. V. KVASNIKOV
Keyword(s):  

2002 ◽  
Vol 6 (7) ◽  
pp. 495-506 ◽  
Author(s):  
Michael Rachner ◽  
Julian Becker ◽  
Christoph Hassa ◽  
Thomas Doerr

Sign in / Sign up

Export Citation Format

Share Document