scholarly journals Objectifying processes: The use of geometric morphometrics and multivariate analyses on Acheulean tools

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Paula García-Medrano ◽  
Elías Maldonado-Garrido ◽  
Nick Ashton ◽  
Andreu Ollé

Nowadays, the fruitful discussion regarding the morphological variability of handaxes during the Middle Pleistocene has reached a decisive moment with the use of more accurate statistical methods, such as geometric morphometrics (GM) and multivariate analyses (MA). This paper presents a preliminary methodological approach for checking the utility of these new approaches on the analysis of the tools’ shape. It goes beyond the simple description of morphology and isolates the variables which define the final morphology of a tool. We compared two Middle Pleistocene sites, Boxgrove and Swanscombe, which are morphologically very different. Then, we applied the GM analysis on 1) 2D images, with two semi-landmark distributions: 28 semi-landmarks, specially concentrated on the tip and butt, and 60 equally spaced points; and 2) on 3D models using new software (AGMT3-D Software) including 5000 semi-landmarks. The more points used to define the tool’s outline, the more accurate will be the interpretation of the variables affecting shape. On the other hand, if the semi-landmarks are localized on specific sectors of the tool, a bias is created, by concentrating on those sectors, rather than the general tool shape. The 3D models offer a new dimension on the shape analysis, as their results mean the combination of plan-shape, profile-shape and the tool’s topography.

2018 ◽  
Vol 23 (6) ◽  
pp. 99-113
Author(s):  
Sha LIU ◽  
Feng YANG ◽  
Shunxi WANG ◽  
Yu CHEN

Author(s):  
I. Boujenane ◽  
D. Petit

SummaryThe objective of this study was a morphological characterization of five Moroccan sheep breeds (Béni Guil, Boujaâd, D'man, Sardi and Timahdite) to assess between- and within-breed variability using multivariate analyses. Fourteen morphological measurements were collected on 876 adult animals of both sexes in 98 different flocks located in 22 geographic localities of five breeds. The multiple analysis of variance revealed that significant morphological differences existed between breeds. The overall proportion of total variance due to between-breed component was 28.3 percent. The factor analysis revealed three factors accounting for 50.1, 11.8 and 7.54 percent of total variance. The first factor had high loadings for variables relating to body size, whilst the second factor had high association with traits reflecting tail length and ear size. The third factor had high loadings for wool trait. The squared Mahalanobis distance between the five sheep breeds were highly significant (P< 0.001). The largest morphological divergence was shown between Béni Guil and Sardi breeds (23.5) and the smallest one was between Boujaâd and Sardi breeds (3.54). The discriminant functions clearly discriminated and assigned 94.4 percent of Béni Guil, 79.7 of Boujaâd, 88.5 percent of D'man, 86.7 of Sardi and 80.1 percent of Timahdite sheep into their breed of origin. Overall morphological differences observed within-breeds were due for 18.1 percent to geographic locality and for 20.7 percent to flock management. It was concluded that the information reported in this study will be the basis for the establishment of characterization and selection strategies for Moroccan sheep.


2021 ◽  
Author(s):  
Madalyn Massey

Structure-from-Motion (SfM) is a photogrammetry process that creates 3D models from overlapping 2D images. This protocol focuses on its application related to geological and geophysical samples. The samples includes fossil, hand samples and rocks. This is a recommended practice to be used later for the publication on United States Geological Survey website.


1999 ◽  
Author(s):  
Dan Zetu ◽  
Pat Banerjee ◽  
Ali Akgunduz

Abstract The fast construction of a Virtual Factory model without using a CAD package can be made possible by using computer vision techniques. In order to create a realistic Virtual Manufacturing environment, especially when such a model has to be created in correlation to an existing facility, a reliable algorithm that extracts 3D models from camera images is needed, and this requires exact knowledge of the camera location when capturing images. In this paper, we describe an approach for depth recovery from 2D images based on tracking a camera within the environment. We also explore the extension of our telemetry-based algorithm to remote facility management, by tracking and synchronizing human motion on the shop floor with motion of an avatar in a Virtual Environment representing the same shop floor.


Zootaxa ◽  
2012 ◽  
Vol 3323 (1) ◽  
pp. 27 ◽  
Author(s):  
PAVEL SROKA ◽  
ALEXANDER V. MARTYNOV ◽  
ROMAN J. GODUNKO

Specimens of Baetis (Rhodobaetis) braaschi Zimmermann, 1980 from the three distant geographic regions (Crimean Pen-insula, Eastern Ukraine and Caucasus) are investigated and compared using a methodological approach combining mor-phological and molecular (partial mtDNA COI sequences) data. Intraspecific variability in several morphologicalcharacters is recognized and described, whereas COI sequences are found to be very uniform. The amount and distributionof the changes of COI sequences do not follow the pattern of morphological variability and/or geographic origin of thespecimens. This indicates that analysis of the changes in the COI sequence can contradict the pattern of morphologicalcharacters commonly used for the discrimination of the individual Rhodobaetis species. As a basis for the future taxonom-ic changes concerning subgenus Rhodobaetis, it is advised (where possible) to critically evaluate both molecular and morphological data.


2020 ◽  
Vol 11 (23) ◽  
pp. 106
Author(s):  
Damiano Aiello ◽  
Cecilia Bolognesi

<p class="VARAbstract">Can we preserve cultural heritage and, consequently, the memory of the past? To answer this question, one should look at the digital revolution that the world has gone through in recent decades and analyse the complex and the dialectical relationship between cultural heritage and new technologies. Thanks to these, increasingly accurate reconstructions of archaeological sites and historical monuments are possible. The resulting digital replicas are fundamental to experience and understand cultural heritage in innovative ways: they have complex and dynamic relationships with the original objects. This research paper highlights the importance and the scientific validity of digital replicas aimed at understanding, enhancing and protecting cultural heritage. The study focuses on the virtual reconstruction of the constructive phases, from the mid-15<sup>th</sup> century to date, of one of the most emblematic Gothic-Renaissance buildings in the city of Milan (Italy): the convent of Santa Maria delle Grazie, famous worldwide for hosting Leonardo da Vinci's Last Supper painting. This site proved to be an ideal case study because of its troubled and little-known history that led to numerous changes over the centuries. Thanks to a methodological approach based on the analysis of the documentary sources and three-dimensional (3D) modelling, it was possible to outline the chronological succession of the convent transformations; the way in which these overlapped the pre-existing structures was described starting from the Renaissance harmonious and organic interventions, to finally reach 18<sup>th</sup>-19<sup>th </sup>centuries inhomogeneous and incompatible additions. Finally, the research was completed by mapping the 3D models based on the sources used and their different levels of accuracy. The 3D models have thus become a valid tool for checking and verifying the reconstruction hypotheses.</p><p class="VARAbstract">Highlights:</p><ul><li><p>The study focused on the virtual reconstruction of the convent of Santa Maria delle Grazie, one of the most emblematicGothic-Renaissance buildings in the city of Milan.</p></li><li><p>By combining data from documentary sources, architectural treatises, period photos and digital survey, the mainbuilding phases of the convent, from the 15th century to date, were digitally reconstructed.</p></li><li><p>The 3D models are enriched with information about the accuracy of the digital reconstruction, creating 3D databasesthat can be easily consulted and updated.</p></li></ul>


Author(s):  
Andrew W. Fitzgibbon ◽  
Geoff Cross ◽  
Andrew Zisserman

Digital representation of an artefact is necessary in order to measure, admire and analyse such ancient pieces. For the purpose of storing, recoding and transmitting information, digital photographs may be enough. However, in the examination purposes of an artefact, a 3D presentation is invaluable as it allows the object viewpoint to be modified freely and 3D measurements to be taken on object features. This chapter describes the system by which 3D models from photographs can be acquired, without the need for the calibration of system geometry such as the camera focal length, relative motion of the camera and object, and the relative positions of the camera and object. This system instead computes the representation of all possible objects and camera configurations which are consistent with the given image. The first section discusses how tracking points observed in 2D images allows for the computation of the relative camera and object geometry. The second section discusses the construction of a triangulated 3D model from the object projections. The third section discusses the refinement of the model based on surface texture.


2019 ◽  
Vol 236 (3) ◽  
pp. 425-433 ◽  
Author(s):  
Abdul Latif ◽  
Mette A. R. Kuijpers ◽  
Martin Rachwalski ◽  
Benny S. Latief ◽  
Anne Marie Kuijpers‐Jagtman ◽  
...  

Author(s):  
Mikayle A. Holm ◽  
Alex Deakyne ◽  
Erik Gaasedelen ◽  
Weston Upchurch ◽  
Paul A. Iaizzo

Abstract Atrial fibrillation, a common cardiac arrhythmia, can lead to blood clots in the left atrial appendage (LAA) of the heart, increasing the risk of stroke. Understanding the LAA morphology can indicate the likelihood of a blood clot. Therefore, a classification convolutional neural network was implemented to predict the LAA morphology. Using 2D images of 3D models created from MRI scans of fixed human hearts and a pre-trained network, an 8.7% error rate was achieved. The network can be improved with more data or expanded to classify the LAA from the automatically segmented DICOM datasets and measure the LAA ostia.


Sign in / Sign up

Export Citation Format

Share Document