scholarly journals TOWARDS MACHINE VISION BASED RAILWAY ASSETS PREDICTIVE MAINTENANCE

2020 ◽  
Vol 19 (2) ◽  
pp. 125
Author(s):  
Ivan Ćirić ◽  
Milan Banić ◽  
Miloš Simonović ◽  
Aleksandar Miltenović ◽  
Dušan Stamenković ◽  
...  

The main goal of this paper is to present novel technologies that can contribute to safety, competitiveness, efficiency and operational reliability of Railway infrastructure through the development of innovative solutions for measuring and monitoring of railway assets based on machine vision. Measuring the transversal position of the wheels on the rail, as well as identification of the defects of the wheel and the rail (such as deformation of rail head edge, lateral wear, worn wheels, cracks in wheel and rail, rolling contact fatigue, corrugation and other irregularities) can increase reliability and lower maintenance costs. Currently, there is a need on the market for the innovative solution, namely the on-board high-speed stereo camera system augmented with a system that projects custom pattern (fringe scanner system) for measuring the transversal position of the wheels on the rail, robust to environmental conditions and waste along the track that can provide reliable measurements of transversal position of the wheels up to 200 km/h. New trends in Precise Industrial 3D Metrology are showing that stereo vision is an absolute must have in modern specialized optical precision measuring systems for the three-dimensional coordinate measurement.

Author(s):  
Mohamad Ghodrati ◽  
Mehdi Ahmadian ◽  
Reza Mirzaeifar

In this paper, the micro-mechanical mechanisms behind the initiation and propagation of rolling contact fatigue (RCF) damages caused by the large traction forces are investigated. This study provides a three-dimensional (3D) model for studying the rolling contact fatigue in rails. Since rolling contact fatigue is highly dependent on the rail’s steel microstructure behavior, a proper 3D approach to capture the microstructure- and orientation-dependent mechanical behavior is required. A precise material model known as crystal plasticity is used for this purpose. Additionally, a cohesive zone approach is implemented to capture the crack initiation and propagation at the grain boundaries. Using the 3D finite element model which is developed for this study, we evaluate the effect of various parameters such as traction forces along the rail, and also the normal forces on the RCF response. The results reveal that the RCF cracks initiate slightly below the rail surface. These cracks start propagating toward the rail surface when the contact force is applied in repeated load cycles. The results also indicate that the depth at which RCF initiates depends on the ratio between the longitudinal traction forces and the normal loads. With larger traction forces, the cracks initiate closer, or at the rail surface, whereas larger normal loads promote the cracks initiation beneath the surface.


1985 ◽  
Vol 107 (3) ◽  
pp. 359-364 ◽  
Author(s):  
A. P. Voskamp

The material response to rolling contact loading has been analyzed using quantitative X-ray diffraction methods. This has led to the discovery of preferred crystalline orientation in very narrow subsurface regions of endurance-tested 6309 deep groove ball bearing inner rings. The high hydrostatic pressure field, derived from the load-induced three-dimensional stress field in each Hertzian contact load cycle, allows substantial microplastic deformation to be accommodated in the subsurface layers. This microplastic deformation is accompanied by transformation of retained austenite, decay of martensite and the development of texture and residual stresses, one of which is a subsurface tensile stress in a direction normal to the surface. Both the preferred orientation and the tensile residual stress allow for crack propagation parallel to the rolling contact surface. Based on these findings, an outline of a qualitative model for rolling contact fatigue is presented.


2010 ◽  
Vol 654-656 ◽  
pp. 2499-2502 ◽  
Author(s):  
Chan Woo Lee ◽  
Seok Jin Kwon

Wheels of the railway vehicle play the important role for driving train through wheel-rail interaction. Especially wheel profile is one of the most important design factors to rule the running stability and safety of train. Accordingly, the control of rolling contact fatigue-related defects is an ongoing concern for both safety and cost reasons. This process is referred to as ratcheting. Wear of wheel and rail surfaces occur due to a mixture of adhesive, abrasive and corrosive processes. In wheel/rail systems with little wear, such failure is manifested by the appearance of closely spaced micro-cracks. In the present paper, a evaluation of surface defects of wheel and rail for Korean high-speed railway. The main research application is the wheel-rail maintenance of Korea high-speed train.


1998 ◽  
Vol 120 (2) ◽  
pp. 304-309 ◽  
Author(s):  
M. Kaneta ◽  
K. Matsuda ◽  
K. Murakami ◽  
H. Nishikawa

Rail dark spot defect, also termed squat failure or shelling, which is a kind of rolling contact fatigue failure and occurs frequently on running surfaces of railway rails carrying high speed traffic, is one of the most dangerous rail failures. The dark spot crack is characterized by a principal crack propagating in the direction of traffic and a second crack growing in the direction opposite to traffic. By using a newly developed two-disk machine, the authors have succeeded in reproducing very similar dark spot cracks to those which appear in actual rails. It is found that the dark spot defects are caused by frequent repetitions of dry and wet runnings, and that the traction force plays an important role for the occurrence of the cracks. The principal crack may occur from a tiny pit formed a posteriori on the contacting surface and after that, the second crack is formed by cracks branched from the extended principal crack. It has also been proved experimentally that water is capable of entering the tip of the crack. Furthermore, a possible mechanism for the dark spot cracking has been proposed on the basis of the fracture mechanics approach.


1961 ◽  
Vol 83 (2) ◽  
pp. 213-222 ◽  
Author(s):  
B. Sternlicht ◽  
P. Lewis ◽  
P. Flynn

The fatigue life of rolling-element bearings has been the subject of numerous investigations. Most recently the influence of the lubricant on fatigue failure has been given added emphasis. This paper presents the results of an investigation which was undertaken in order to gain a better understanding of fluid behavior in the contact zone and to determine the influence of the lubricant on rolling contact fatigue life. The investigation had three distinct facets: (a) An analysis was performed on pressure and temperature distribution within the contact zone of rolling disks. In the analysis Reynolds, energy, and elasticity equations were solved simultaneously and fluid properties, such as viscosity dependence on temperature and pressure were included. (b) Dynamic stresses in two contacting cylindrical bodies were measured by means of photoelastic techniques. These measurements were used to test the validity of the analytically predicted stress distribution. (c) High-speed ball-bearing fatigue tests were conducted with two specially blended oils which had the same viscosity at the bearing inlet temperature, but widely different pressure viscosity characteristics. The physical characteristics of the oils were the same as those considered in the analysis. The paper summarizes the work and presents a hypothesis for the failure mechanism.


Sign in / Sign up

Export Citation Format

Share Document