NONLINEAR SINGULAR STURM-LIOUVILLE PROBLEMS WITH IMPULSIVE CONDITIONS

Author(s):  
Bilender P. Allahverdiev ◽  
Husein Tuna

In this paper, we consider a non-linear impulsive Sturm-Liouville problem on semiinfinite intervals in which the limit-circle case holds at infinity for THE Sturm-Liouville expression. We prove the existence and uniqueness theorems for this problem.

Author(s):  
David Race

SynopsisIn this paper, the formally J-symmetric Sturm-Liouville operator with complex-valued coefficients is considered and a generalisation of the Weyl limit-point, limit-circle dichotomy is sought by means of m (λ )-functions. These functions are then used to give an explicit description of all the associated J-selfadjoint operators with separated boundary conditions in the limit-circle case. A formulation of the eigenvalues of these operators, and a characterisation of which extensions are non-well-posed, are also found. Finally, the limit-point case is studied, mainly by means of an example.


2011 ◽  
Vol 2011 ◽  
pp. 1-41 ◽  
Author(s):  
Roman Šimon Hilscher ◽  
Petr Zemánek

We develop the Weyl-Titchmarsh theory for time scale symplectic systems. We introduce theM(λ)-function, study its properties, construct the corresponding Weyl disk and Weyl circle, and establish their geometric structure including the formulas for their center and matrix radii. Similar properties are then derived for the limiting Weyl disk. We discuss the notions of the system being in the limit point or limit circle case and prove several characterizations of the system in the limit point case and one condition for the limit circle case. We also define the Green function for the associated nonhomogeneous system and use its properties for deriving further results for the original system in the limit point or limit circle case. Our work directly generalizes the corresponding discrete time theory obtained recently by S. Clark and P. Zemánek (2010). It also unifies the results in many other papers on the Weyl-Titchmarsh theory for linear Hamiltonian differential, difference, and dynamic systems when the spectral parameter appears in the second equation. Some of our results are new even in the case of the second-order Sturm-Liouville equations on time scales.


2016 ◽  
Vol 66 (4) ◽  
Author(s):  
Bilender P. Allahverdiev

AbstractIn this study we construct a space of boundary values of the minimal symmetric discrete Sturm-Liouville (or second-order difference) operators with defect index (1, 1) (in limit-circle case at ±∞ and limit-point case at ∓∞), acting in the Hilbert space


Author(s):  
F. V. Atkinson ◽  
C. T. Fulton

Asymptotic formulae for the Titchmarsh—Weyl m-coefficient on rays in the complex λ-plane for the equation − y ″ + qy = λy whenthe potential is limit circle and non-oscillatory at x = 0 are obtained under assumptions slightly more general than xq(x) ∈ L1(0,c). The behaviour of q at the right end-point is arbitrary and may fall in either the limit-point or limit-circle case. A method of regularization of the equation is given that can be made to depend either on a solution of the equation for λ = 0 or more directly on an approximation to the solution in terms of q. This enables equivalent definitions of the m-coefficient to be given for the singular Sturm—Liouville problem associated with a singular limit-circle boundary condition, and its associatedregular Sturm—Liouville problem. As a consequence, it becomes possible to apply asymptotic results obtained by Atkinson for the regular problem in order to give asymptoticresults for the singular problem. Potentials of the form q(x) = C/xj, 1 ≤ j < 2, are included. In the case j = 1, an independent calculation of the limit-point m-coefficient over the range (0,∞), relying on Whittaker functions, verifies the main result.


Sign in / Sign up

Export Citation Format

Share Document