scholarly journals Real-time implementation of QFT, GA, and BFTPSO controller for pH neutralization system

2021 ◽  
Vol 19 (3) ◽  
pp. 263-278
Author(s):  
V. Aparna ◽  
D.N. Jamal

The control of a pH process is complex because of severe nonlinearities in its behavior. A continuous pH neutralization process is usually represented as a first-order plus dead time system, but its gain varies for different operating points. Therefore, a conventional linear controller cannot be used, and the pH system was thus represented as a linear state-space model around an equilibrium point. This linear model was then used to compute the PID controller gains using robust and optimization techniques like quantitative feedback theory, bacterial foraging technique-based particle swarm optimization algorithm, and genetic algorithm. The corresponding controller gains resulting from the three algorithms were used to control the pH using a reconfigurable I/O device, NI myRIO-1900. Finally, the output time domain specifications and the servo and regulatory responses, resulting from the three algorithms, were compared in simulation and in real-time to deduce the appropriate tuning algorithm for this system.

Author(s):  
José Ramírez-Senent ◽  
Jaime H García-Palacios ◽  
Iván M Díaz

In this work, a Model-Based Control method for a single horizontal degree of freedom shaking table is presented. The proposed approach relies on the real-time inversion of a previously identified linear state-space model of the hydraulic servoactuator which drives the table. The inputs to the model are the control command and the force exerted on servoactuator rod. The latter contains all the relevant information related to the external actions acting on the servoactuator, thus making control system performance independent from the specimen with which the table is loaded and enabling it to cope with specimen non-linear behavior and eventual external forces exerted on it. A parallel proportional integral derivative controller, which accounts for non-modeled dynamics and a feedback linearization scheme, aimed at minimizing servovalve flow non-linearity, complement the previous architecture. The effectiveness of the method has been assessed numerically. According to the simulation results, the performance of the proposed technique appears quite promising; however, several factors must be carefully considered to achieve successful actual implementation.


PH control system plays an important role in a wide range of industrial applications particularly in wastewater treatment management. Untreated wastewater generally contains high level of organic materials, numerous pathogenic microorganisms which raised concern in environmental and health hazards. The high non-linearity and time varying in pH neutralization process and the uncertainty of the plant dynamics are the key challenges of the pH control systems. There are many sophisticated PID tuning method, however conventional tuning procedure remains effectives in industries. The overall control scheme involves controls of flow rates of acid and base solutions. Ziegler Nichols method tuning has been developed for first order and second order system, in which, also applicable for pH neutralization control model. This paper elaborates the performance of transient response for pH neutralization process by using empirical techniques through the simulation software along with Proportional-Integral-Derivative (PID) for controlling purpose. A result of comparison between Ziegler-Nichols versus First Order plus Time Delay (FOPTD) of pH control system design for PID controller is seeing in a graph.


2014 ◽  
Vol 1016 ◽  
pp. 451-459 ◽  
Author(s):  
Riccardo Gori ◽  
Francesca Pausilli ◽  
Marilena D. Pavel ◽  
Massimo Gennaretti

This paper introduces a new approach for the identification of linear state-space models of dynamical systems of arbitrary complexity. The identification procedure is described and applied for modeling aeroelastic response of helicopter main rotors. With the aim of developing a tool that might be conveniently applied for real-time simulations of helicopter flight dynamics, the state-space model considered is a reduced-order description of loads transmitted to the airframe due to hub motion and blade pitch controls. In order to validate the proposed approach, loads from the state-space, reduced-order model are compared with those predicted by the complete full-state, nonlinear rotor model for prescribed helicopter maneuvers.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas George ◽  
V. Ganesan

AbstractThe processes which contain at least one pole at the origin are known as integrating systems. The process output varies continuously with time at certain speed when they are disturbed from the equilibrium operating point by any environment disturbance/change in input conditions and thus they are considered as non-self-regulating. In most occasions this phenomenon is very disadvantageous and dangerous. Therefore it is always a challenging task to efficient control such kind of processes. Depending upon the number of poles present at the origin and also on the location of other poles in transfer function different types of integrating systems exist. Stable first order plus time delay systems with an integrator (FOPTDI), unstable first order plus time delay systems with an integrator (UFOPTDI), pure integrating plus time delay (PIPTD) systems and double integrating plus time delay (DIPTD) systems are the classifications of integrating systems. By using a well-controlled positioning stage the advances in micro and nano metrology are inevitable in order satisfy the need to maintain the product quality of miniaturized components. As proportional-integral-derivative (PID) controllers are very simple to tune, easy to understand and robust in control they are widely implemented in many of the chemical process industries. In industries this PID control is the most common control algorithm used and also this has been universally accepted in industrial control. In a wide range of operating conditions the popularity of PID controllers can be attributed partly to their robust performance and partly to their functional simplicity which allows engineers to operate them in a simple, straight forward manner. One of the accepted control algorithms by the process industries is the PID control. However, in order to accomplish high precision positioning performance and to build a robust controller tuning of the key parameters in a PID controller is most inevitable. Therefore, for PID controllers many tuning methods are proposed. the main factors that lead to lifetime reduction in gain loss of PID parameters are described in This paper and also the main methods used for gain tuning based on optimization approach analysis is reviewed. The advantages and disadvantages of each one are outlined and some future directions for research are analyzed.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Liang Zhao

This paper presents a novel abnormal data detecting algorithm based on the first order difference method, which could be used to find out outlier in building energy consumption platform real time. The principle and criterion of methodology are discussed in detail. The results show that outlier in cumulative power consumption could be detected by our method.


Author(s):  
Zhongyou Wu ◽  
Yaoyu Li

Real-time optimization of wind farm energy capture for below rated wind speed is critical for reducing the levelized cost of energy (LCOE). Performance of model based control and optimization techniques can be significantly limited by the difficulty in obtaining accurate turbine and farm models in field operation, as well as the prohibitive cost for accurate wind measurements. The Nested-Loop Extremum Seeking Control (NLESC), recently proposed as a model free method has demonstrated its great potential in wind farm energy capture optimization. However, a major limitation of previous work is the slow convergence, for which a primary cause is the low dither frequencies used by upwind turbines, primarily due to wake propagation delay through the turbine array. In this study, NLESC is enhanced with the predictor based delay compensation proposed by Oliveira and Krstic [1], which allows the use of higher dither frequencies for upwind turbines. The convergence speed can thus be improved, increasing the energy capture consequently. Simulation study is performed for a cascaded three-turbine array using the SimWindFarm platform. Simulation results show the improved energy capture of the wind turbine array under smooth and turbulent wind conditions, even up to 10% turbulence intensity. The impact of the proposed optimization methods on the fatigue loads of wind turbine structures is also evaluated.


2014 ◽  
Vol 511-512 ◽  
pp. 867-870
Author(s):  
Su Zhen Li ◽  
Xiang Jie Liu ◽  
Gang Yuan

T-S model is linearized at sampling points into the form of linear time-invariant state space , and using supervisory predictive control and muti-step predictive control strategy, which reduces amount of calculation and improves the control performance. Introduction


Sign in / Sign up

Export Citation Format

Share Document