neutralization process
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 37)

H-INDEX

16
(FIVE YEARS 2)

Author(s):  
Anatolii Zhuchenko ◽  
Ruslan Osipa ◽  
Liudmyla Osipa ◽  
Dmytro Kovaliuk

At the present stage of technical progress, all industries face an extremely complex problem of creating reliable barriers that prevent the penetration of industrial emissions into the environment. Currently, the issues of stabilizing the quality of wastewater treatment have become especially important in connection with the task of developing wastewater-free industrial complexes. Among the complex scientific and technical problems associated with this task, the problem of stable and reliable maintenance of water quality parameters at the outlet of technological systems is crucial, as leakage of pollutants immediately affects the state of basic production, disrupting its technology and infecting ecosystems. The focus of industry on a sharp reduction in emissions and on the creation of industrial cycles with circulating water supply requires intensive efforts to improve the wastewater treatment technology, the introduction of high-performance processes and devices, as well as the synthesis of control systems for typical wastewater treatment processes. For the performance of automated control systems for typical cleaning processes, it is necessary to develop a software package on the basis of appropriate mathematical models of typical processes. To obtain them, methods of mathematical and simulation modeling and variance analysis were used. In order to assess the quality of modeling, the presented mathematical model describing the statics of the neutralization process for ferrous sulfate water was tested for compliance. To do this, two experiments were performed (the first at an initial concentration of sulfuric acid of 800 [mg/l] and ferrous sulfate of 4000 [mg/l] and the second at an initial concentration of sulfuric acid of 800 [mg/l] and ferrous sulfate of 2000 [mg/l]). First of all, a precondition for the reproducibility of experimental results was verified using the Cochrane test. The mathematical model was verified for adequacy on the basis of Fisher's criterion for the significance level q = 0.05 with degrees of freedom j1 = 16 and j2 = 17. For the first experiment, Grozr = 0.50557 and Gmab = 0.73; i.e., Grozr < Gmab and dispersions are homogeneous. Frozr = 1.0225 and Fmab = 2.4 and thus Frozr < Fmab, and there is no reason to say that the model is inadequate. For the second experiment, Grozr = 0.50308 and Gmab = 0.73; i.e., Grozr < Gmab and dispersions are also homogeneous. Frozr = 1.0005 and Fmab = 2.4 and thus Frozr < Fmab, which also indicates that the model is adequate. The issue related to the performance of technological systems for wastewater treatment in non-stationary modes is directly dictated by the specific operating conditions of treatment facilities, which are expressed by the instability of parameters at their inlet. The inability to apply the necessary technological action to the flow in time is a serious obstacle to the implementation of the cleaning depth, which is guaranteed by the physicochemical basis of the methods incorporated in technological systems and requiring cleaning standards. The operator cannot handle this complex task manually. On the basis of the proposed mathematical model, a structural-parametric diagram of the automated process control system has been developed, which makes it possible to proceed to the elaboration of algorithms and software for the control system necessary for automated control of the wastewater treatment process.


Author(s):  
Oleksandr Dzevochko ◽  
Mykhaylo Podustov ◽  
Ihor Lysachenko ◽  
Alona Dzevochko ◽  
Roman Vorozhbiian

The process of sulfation products neutralization in the production of surfactants is not basic, but at this stage the positive effects obtained at the stage of sulfation of organic matter with sulfur trioxide gas are fixed. To preserve the degree of sulfation obtained, it is necessary to carry out the neutralization process under conditions precluding the occurrence of hydrolysis in an acidic medium. The neutralization reaction takes place with a high heat release of about 40 kJ / mol. Analysis of the literature data showed that the neutralization process is not well covered. Little data and hardware and technological design of the process. The process of neutralization in industrial conditions is carried out in apparatus with mechanical turbine mixers, to remove the heat of the exothermic reaction, the paste from the neutralizer is fed into a water-borne heat exchanger and returns to the neutralizer again. The purpose of this study is to determine the optimal technological parameters of the process of neutralization of sulfate products and the development of a mathematical model of this process. The results of experimental studies of the process of sulfation products neutralization with an aqueous solution of sodium hydroxide are presented. During the research, the influence of technological parameters on the quality indicators of neutralization products was determined, the main of which is the degree of sulfation. The optimal technological parameters for carrying out this process in a reactor with a stirrer under laboratory conditions were found. Based on the data obtained in the basis of this process, the use of a continuous-action reactor with a turbine mixer and with a combined heat exchanger. For the transition to an industrial reactor-neutralizer, a mathematical model has been developed, which makes it possible, by means of mathematical modeling, to correct technological parameters in industrial conditions.


2021 ◽  
Author(s):  
Ying Fu ◽  
Juliana da Fonseca Rezende e Mello ◽  
Bryan D Fleming ◽  
Alex Renn ◽  
Catherine Z. Chen ◽  
...  

Neutralizing antibodies targeting the SARS-CoV-2 spike protein have shown a great preventative/therapeutic potential. Here, we report a rapid and efficient strategy for the development and design of SARS-CoV-2 neutralizing humanized nanobody constructs with sub-nanomolar affinities and nanomolar potencies. CryoEM-based structural analysis of the nanobodies in complex with spike revealed two distinct binding modes. The most potent nanobody, RBD-1-2G(NCATS-BL8125), tolerates the N501Y RBD mutation and remains capable of neutralizing the B.1.1.7 (Alpha) variant. Molecular dynamics simulations provide a structural basis for understanding the neutralization process of nanobodies exclusively focused on the spike-ACE2 interface with and without the N501Y mutation on RBD. A primary human airway air-lung interface (ALI) ex vivo model showed that RBD-1-2G-Fc antibody treatment was effective at reducing viral burden following WA1 and B.1.1.7 SARS-CoV-2 infections. Therefore, this presented strategy will serve as a tool to mitigate the threat of emerging SARS-CoV-2 variants.


Author(s):  
K. Senthil Kumar ◽  
Abdul Wahid Nasir ◽  
P. Mani ◽  
Idamakanti Kasireddy ◽  
M. SivaramKrishnan ◽  
...  

2021 ◽  
Author(s):  
Govind Singh Jethi ◽  
Sandeep Kumar Sunori ◽  
Mallika Tewari ◽  
Pratul Goyal ◽  
Sudhanshu Maurya ◽  
...  

2021 ◽  
Vol 43 (1) ◽  
pp. 27
Author(s):  
Muhammad Nibras Azza Adhikara ◽  
Reza Miftahul Ulum ◽  
Alfian Ferdiansyah Madsuha ◽  
Faizinal Abidin

AbstractElectric vehicles become the alternative to solve the climate change and global warming problems by providing a more eco-friendly and sustainable source of energy. As the demand for sustainable vehicles increased, the functionality of batteries become crucial. One of the important aspects inside the batteries is nickel. Nickel plays a big role in lithium-ion batteries by delivering greater amounts of energy density with a higher storage capacity, which means it provides bigger efficiency to the batteries. Yet, the attempt of optimizing nickel extraction remains a challenge. Therfore, nickel extraction process of lateritic ore with high efficiency is investigated by using hydrometellurgy process, specifically the iron removal process in atmospheric condition in mixed hydroxide precipitates (MHP) route.The reagent solution of (20% w/w and 25%  w/w) calcium carbonate (CaCO3) at pH (1, 2, 3) were utilized as additive in this process. The precipitates resulted from PLS were characterized by x-ray diffraction (XRD) and Scanning Electron Microscopy - Energy Dispersive X-Ray (SEM–EDS), while the filtrates were investigated by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). Analysis based on precipitates demonstrates that the acid neutralization process took place with a sufficient amount of iron in the precipitates with the least amount of nickel. In addition, all pH and concentration of precipitates qualitatively illustrate the same neutralization process involving calcium and sulfur. From the results of filtrate through ICP testing in this study, pH 1 for both 20% and 25% concentration provides the lowest recovery rate alongside the smallest ppm compare to pH 2 and 3; thus, the iron precipitates in the formation of iron sulfide and/or iron sulfate. Overall, the optimum parameter is 25% of calcium carbonate, pH 1, 90oC for 2 hours of agitation to reduce the amount of iron in the solution.


2021 ◽  
Vol 7 (6) ◽  
pp. 59461-59481
Author(s):  
Flávio Pinheiro Valois ◽  
Ana Rosa Bezarra Cardoso ◽  
Raymundo da Costa França Neto ◽  
Lia Martins Pereira ◽  
Dyenny Ellen Lima Lhamas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document