scholarly journals MODEL OF MID-AND LOW-LATITUDE F REGION IONOSPHERE AND PROTONOSPHERE

1981 ◽  
Vol 20 (1) ◽  
pp. 11-39
Author(s):  
A. Tan ◽  
S. T. Wu

The coupled continuity and momentum equations of O+ and H+ ions in the F region and the protonosphere are solved for a mid-latitude station (Arecibo) and a low-latitude station (Jicamarca) to investigate the diurnal behavior of the peak electron density NmF2, the height of the peak HmF2, the O+-H+ transition height Htr and the transition level ion density Ntr. The effects of the neutral wind on the NmF2, HmF2 Ntr and Htr curves above Arecibo are more important than and generally in the opposite direction of those of a sinusoidal elctromagnetic drift. the electromagnetic drift plays a fa-reaching role in shaping the ionospheric and protonospheric profiles at Jicamarca.  An upward drift that peaks during the day produces a 'valey' in the NmF2 curve, while an upward drift that stays constant during ost of the day produces a 'plateau'.  The nighttime decay in Nmf2 is due to the conbined effects of a slow downward drift and chemical recombination.  A nocturnal increase in NmF2 is due to a sufficiently large downward drift when the resultant 'squeezing' of the field tubes overcomes the O+ loss rate.  The diurnal variations of HmF2 and Htr tend to follow that of the upward drift velocity pattern, with gradients somewhat smoothed.  A downward reversal of the drift at sunset causes and enhancement in the post-sunset Ntr. Finally, the applicability of the model to the study of the total electron content measurements of the ATS-6 radio beacon experiments at Ootacamund is demonstrated.  By comparing with the observed values, the probable drift velocities over Ootacamund are determined for October and December, 1975.  The drift velocity patterns show broad similitarities with those observed over Jicamarca.

Author(s):  
Dada P. Nade ◽  
Swapnil S. Potdar ◽  
Rani P. Pawar

The plasma irregularities have been frequently observed in the F-region, at low latitude regions, due to the instability processes occurring in the ionosphere. The depletions in electron density, as compared to the background density, is a signature of the plasma irregularities. These irregularities are also known as the “equatorial plasma bubble” (EPB). These EPBs can measure by the total electron content (TEC) using GPS receiver and by images of the nightglow OI 630.0 nm emissions using all sky imager (ASI). The current chapter is based on the review on the signature of the EPBs in TEC and ASI. measurements. We have also discussed the importance of the study of EPBs.


2019 ◽  
Vol 16 (1) ◽  
pp. 64-78
Author(s):  
Temitope Pascal Owolabi ◽  
Emmanuel Ariyibi ◽  
Olatunbosun Lilian ◽  
Ayomide O Olabode

The equivalent slab-thickness  is very important in the study of the complex dynamics of the ionosphere as a result of its ability to determine the skewness of the ionospheric electron density profile. This study involves the day to day and monthly variations of . Ionosonde  (FoF2) and Total electron content (TEC) data at the low latitude station of Sao Luis (Glat 2.60° S, Glong 315.80° E and Mlat 6.05° N and Mlong 28.40° E), Brazil and mid latitude station of Chilton (Glat 51.50° N, Glong 359.40° E and Mlat 53.35° N and Mlong 84.34° E), United Kingdom from January 2013 to December 2015 were used in the study of  . For Sao Luis station, the diurnal pattern for the different days are characterized by day time (08:00 – 16:00 UT) high values and nighttime (20:00 – 04:00 UT) low values; however, Chilton shows signatures, such as day time low values and nighttime high values. Also, the daytime values (~600 km) of  for the low latitude station (Sao Luis) is more than double the mid latitude station (Chilton) maximum value (~235 km) over the years considered. The monthly variation of  also indicate a seasonal variation with highest daytime values (400 km) during winter months and lowest (below 300 km) during summer months for the low latitude station (Sao Luis). However, the nighttime values are of the same order (about 200 km) for the low latitude station (Sao Luis). Also, highest daytime values (above 250 km) are observed during summer months and the nighttime values are below 200 km over the years for the mid latitude station (Chilton).


2021 ◽  
Vol 13 (5) ◽  
pp. 945
Author(s):  
Zhongxin Deng ◽  
Rui Wang ◽  
Yi Liu ◽  
Tong Xu ◽  
Zhuangkai Wang ◽  
...  

In the current study, we investigated the mechanism of medium-scale traveling ionospheric disturbance (MSTID) triggering spread-F in the low latitude ionosphere using ionosonde observation and Global Navigation Satellite System-Total Electron Content (GNSS-TEC) measurement. We use a series of morphological processing techniques applied to ionograms to retrieve the O-wave traces automatically. The maximum entropy method (MEM) was also utilized to obtain the propagation parameters of MSTID. Although it is widely acknowledged that MSTID is normally accompanied by polarization electric fields which can trigger Rayleigh–Taylor (RT) instability and consequently excite spread-F, our statistical analysis of 13 months of MSTID and spread-F occurrence showed that there is an inverse seasonal occurrence rate between MSTID and spread-F. Thus, we assert that only MSTID with certain properties can trigger spread-F occurrence. We also note that the MSTID at night has a high possibility to trigger spread-F. We assume that this tendency is consistent with the fact that the polarization electric field caused by MSTID is generally the main source of post-midnight F-layer instability. Moreover, after thorough investigation over the azimuth, phase speed, main frequency, and wave number over the South America region, we found that the spread-F has a tendency to be triggered by nighttime MSTID, which is generally characterized by larger ΔTEC amplitudes.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Pin-Hsuan Cheng ◽  
Charles Lin ◽  
Yuichi Otsuka ◽  
Hanli Liu ◽  
Panthalingal Krishanunni Rajesh ◽  
...  

AbstractThis study investigates the medium-scale traveling ionospheric disturbances (MSTIDs) statistically at the low-latitude equatorial ionization anomaly (EIA) region in the northern hemisphere. We apply the automatic detection algorithm including the three-dimensional fast Fourier transform (3-D FFT) and support vector machine (SVM) on total electron content (TEC) observations, derived from a network of ground-based global navigation satellite system (GNSS) receivers in Taiwan (14.5° N geomagnetic latitude; 32.5° inclination), to identify MSTID from other waves or irregularity features. The obtained results are analyzed statistically to examine the behavior of low-latitude MSTIDs. Statistical results indicate the following characteristics. First, the southward (equatorward) MSTIDs are observed almost every day during 0800–2100 LT in Spring and Winter. At midnight, southward MSTIDs are more discernible in Summer and majority of them are propagating from Japan to Taiwan. Second, northward (poleward) MSTIDs are more frequently detected during 1200–2100 LT in Spring and Summer with the secondary peak of occurrence between day of year (DOY) 100–140 during 0000–0300 LT. The characteristics of the MSTIDs are interpreted with additional observations from radio occultation (RO) soundings of FORMOSAT-3/COSMIC as well as modeled atmospheric waves from the high-resolution Whole Atmosphere Community Climate Model (WACCM) suggesting that the nighttime MSTIDs in Summer is likely connected to the atmospheric gravity waves (AGWs).


2008 ◽  
Vol 26 (4) ◽  
pp. 893-903 ◽  
Author(s):  
◽  
◽  
◽  

Abstract. Sometimes the ionospheric total electron content (TEC) is significantly enhanced during low geomagnetic activities before storms. In this article, we investigate the characteristics of those interesting TEC enhancements using regional and global TEC data. We analyzed the low-latitude TEC enhancement events that occurred around longitude 120° E on 10 February 2004, 21 January 2004, and 4 March 2001, respectively. The TEC data are derived from regional Global Positioning System (GPS) observations in the Asia/Australia sector as well as global ionospheric maps (GIMs) produced by Jet Propulsion Laboratory (JPL). Strong enhancements under low geomagnetic activity before the storms are simultaneously presented at low latitudes in the Asia/Australia sector in regional TEC and JPL GIMs. These TEC enhancements are shown to be regional events with longitudinal and latitudinal extent. The regions of TEC enhancements during these events are confined at narrow longitude ranges around longitude 120° E. The latitudinal belts of maxima of enhancements locate around the northern and southern equatorial ionization anomaly (EIA) crests, which are consistent with those low-latitude events presented by Liu et al. (2008). During the 4 March 2001 event, the total plasma density Ni observed by the Defense Meteorological Satellite Program (DMSP) spacecraft F13 at 840 km altitude are of considerably higher values on 4 March than on the previous day in the TEC enhanced regions. Some TEC enhancement events are possibly due to contributions from auroral/magnetospheric origins; while there are also quasi-periodic enhancement events not related to geomagnetic activity and associated probably with planetary wave type oscillations (e.g. the 6 January 1998 event). Further investigation is warrented to identify/separate contributions from possible sources.


Author(s):  
Adil Hussain ◽  
Munawar Shah

The international reference ionosphere (IRI) models have been widely used for correcting the ionospheric scintillations at different altitude levels. An evaluation on the performance of VTEC correction from IRI models (version 2007, 2012 and 2016) over Sukkur, Pakistan (27.71º N, 68.85º E) is presented in this work. Total Electron Content (TEC) from IRI models and GPS in 2019 over Sukkur region are compared. The main aim of this comparative analysis is to improve the VTEC in low latitude Sukkur, Pakistan. Moreover, this study will also help us to identify the credible IRI model for the correction of Global Positioning System (GPS) signal in low latitude region in future. The development of more accurate TEC finds useful applications in enhancing the extent to which ionospheric influences on radio signals are corrected. VTEC from GPS and IRI models are collected between May 1, 2019 and May 3, 2019. Additionally, Dst and Kp data are also compared in this work to estimate the geomagnetic storm variations. This study shows a good correlation of 0.83 between VTEC of GPS and IRI 2016. Furthermore, a correlation of 0.82 and 0.78 is also recorded for IRI 2012 and IRI 2007 respectively, with VTEC of GPS. The IRI TEC predictions and GPS-TEC measurements for the studied days reveal the potential of IRI model as a good candidate over Pakistan.


Sign in / Sign up

Export Citation Format

Share Document