scholarly journals Analysis of Inter-Satellite Optical Wireless Channel for Improved Transmission and Data Rate

Author(s):  
Mini Rani
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bobby Barua ◽  
S. P. Majumder

AbstractAn analytical approach is developed in this paper to evaluate the bit error rate (BER) performance of an optical wireless (OW) communication system with multiplexing of the RF orthogonal frequency division (OFDM) over turbulent condition taking into account the effect of pointing error. The received signal is detected through direct detection receiver followed by RF synchronous demodulation including the effect of OW channel and different form of noises such as receiver thermal noise, background channel noise and photo detector shot noise. Analysis is developed for an OFDM system over the OW channel, taking into account the effect of pointing error between the transmitter and the receiver in turbulent condition and the analysis reveals that the OFDM OW system is less affected by pointing error with deference to the major power penalty at BER performance. For instance, power penalty at BER 10−9 is found to be 3 dB for 256 OFDM subcarriers with 9 millidegree displacement angle at a data rate of 10 Gbps under turbulent condition. It is found that the system is more influenced by the atmospheric turbulence at a higher data rate.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Sharma ◽  
Rajinder Singh Kaler

Abstract The optical wireless communication has been designed by developing a model with the support of MATLAB simulator using Simulink where channel considered to be a free space. In this model, Additive White Gaussian Noise (AWGN) channel has used to analyze bit error rate (BER) and power loss of optical wireless signal at receiver. The consequence due to turbulence in atmosphere of free space on transmitted signal has examined. The BER and signal power have extremely ruined on rigorous atmospheric unstable condition even for a short distance in an optical wireless channel. The BER of less than 10−3 has been achieved for free space optical communication considered to be an excellent BER for FSO.


2011 ◽  
Author(s):  
P. Sri Saini ◽  
Shanthi Prince ◽  
P. Predeep ◽  
Mrinal Thakur ◽  
M. K. Ravi Varma

Author(s):  
Imran Raza ◽  
Sidra Jabeen ◽  
Fozia Shabbir ◽  
Mashood Abbasi ◽  
Saqib Chaudhry ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
pp. 196 ◽  
Author(s):  
Franco Fuschini ◽  
Marina Barbiroli ◽  
Giovanna Calò ◽  
Velio Tralli ◽  
Gaetano Bellanca ◽  
...  

Networks-on-chip are being regarded as a promising solution to meet the on-going requirement for higher and higher computation capacity. In view of future kilo-cores architectures, electrical wired connections are likely to become inefficient and alternative technologies are being widely investigated. Wireless communications on chip may be therefore leveraged to overcome the bottleneck of physical interconnections. This work deals with wireless networks-on-chip at optical frequencies, which can simplify the network layout and reduce the communication latency, easing the antenna on-chip integration process at the same time. On the other end, optical wireless communication on-chip can be limited by the heavy propagation losses and the possible cross-link interference. Assessment of the optical wireless network in terms of bit error probability and maximum communication range is here investigated through a multi-level approach. Manifold aspects, concurring to the final system performance, are simultaneously taken into account, like the antenna radiation properties, the data-rate of the core-to core communication, the geometrical and electromagnetic layout of the chip and the noise and interference level. Simulations results suggest that communication up to some hundreds of μm can be pursued provided that the antenna design and/or the target data-rate are carefully tailored to the actual layout of the chip.


Sign in / Sign up

Export Citation Format

Share Document