scholarly journals Optimizing the Performance of Fuzzy Logic Controller in Power Quality Enhancement

Author(s):  
R. Balamurugan ◽  
R. Nithya

In this paper, a Fuel cell (FC) / Photovoltaic cell (PV)/ Battery operated three phase Shunt Active power Filter (SAF) is proposed for improving the power quality at the utility side. Fuzzy based instantaneous p-q theory control is proposed for SAF. This SAF consists of Voltage Source PWM Converter (VSC) and a DC link capacitor supplied by a FC/PV/Battery. The filter provides harmonic mitigation with reactive power compensation and neutral compensation for loads at the Point of Common Coupling (PCC). A Single switch boost DC-DC converter connects the FC/PV/Battery with the VSC to maintain the load. The performance of the proposed SAF is tested in MATLAB / SIMULINK environment with Fuzzy logic controller (FLC). The controller maintains the DC link voltage based on the current reference generated by the p-q theory. The Hysteresis PWM current controller is employed to generate the gating pulses to the switches in VSC. The simulation results of the proposed SAF validate the effectiveness of FLC in power quality enhancement.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 892
Author(s):  
Poornima Udaychandra Panati ◽  
Sridhar Ramasamy ◽  
Mominul Ahsan ◽  
Julfikar Haider ◽  
Eduardo M.G. Rodrigues

The existing solutions for reducing total harmonic distortion (THD) using different control algorithms in shunt active power filters (SAPFs) are complex. This work proposes a split source inverter (SSI)-based SAPF for improving the power quality in a nonlinear load system. The advantage of the SSI topology is that it is of a single stage boost inverter with an inductor and capacitor where the conventional two stages with an intermediate DC-DC conversion stage is discarded. This research proposes inventive control schemes for SAPF having two control loops; the outer control loop regulates the DC link voltage whereas the inner current loop shapes the source current profile. The control mechanism implemented here is an effective, less complex, indirect scheme compared to the existing time domain control algorithms. Here, an intelligent fuzzy logic control regulates the DC link voltage which facilitates reference current generation for the current control scheme. The simulation of the said system was carried out in a MATLAB/Simulink environment. The simulations were carried out for different load conditions (RL and RC) using a fuzzy logic controller (FLC) and PI controllers in the outer loop (voltage control) and hysteresis current controller (HCC) and sinusoidal pulse width modulation (SPWM) in the inner loop (current control). The simulation results were extracted for dynamic load conditions and the results demonstrated that the THD can be reduced to 0.76% using a combination of SPWM and FLC. Therefore, the proposed system proved to be effective and viable for reducing THD. This system would be highly applicable for renewable energy power generation such as Photovoltaic (PV) and Fuel cell (FC).


This paper accord the Power Quality interpretation to make apparent for electricity consumers been made better power quality with application of DVR.Despite of advantages of DVR, it focuses full extent of the relatedness surrounded by loads, various power networks. DVR is most accepted power device which could be used for better solution for the disturbances of voltages in distribution systems for sensitive loads. For efficiency considerations, the DVR mostly hinge on an act of presenting the control modus, and can be harnessed to switching the inverters. Reliability of hysteresis voltage control with ease in operation under variable switching frequency can be trustworthy for a DVR can introduced and the proposed methods achieves good compensation of voltages under disturbances and can be seen by the simulation by using fuzzy logic controller.


Author(s):  
Abdul Rasheed ◽  
G. Keshava Rao

<p>Generally, the power systems are mainly effected by the continuous changes in operational requirement and increasing amount of distributed energy systems. This paper proposes a new concept of power-control strategies for a micro grid generation system for better transfer of power. The micro grids are obtained with the general renewable energy sources and this concept provides the maximum utilization of power at environmental free conditions with low losses; then the system efficiency is also improved. This paper proposes a single stage converter based micro grid to reduce the number of converters in an individual ac or dc grid. The proposed micro grid concept can work in both stand-alone mode and also in grid interfaced mode. The distortions that occur in power system due to changes in load or because of usage of non-linear loads, can be eliminated by using control strategies designed for shunt active hybrid filters such as series and shunt converters. A conventional Proportional Integral (PI) and Fuzzy Logic Controllers are used for power quality enhancement by reducing the distortions in the output power. The simulation results are compared among the two control strategies, that fuzzy logic controller and pi controller.</p>


Sign in / Sign up

Export Citation Format

Share Document