scholarly journals Leaching Estimation for Paddy Crop using IoT and Machine Learning

Author(s):  
Ch. Madhavi Sudha

Soil salinity is a major issue in farming faced by many farmers across the globe. So it is very much important to identify the salinity level of the soil. Internet of Things (IoT) assisted solution is proposed to determine Electric Conductivity, temperature, and Moisture level at the root zone of the crop field. Internet of Things (IoT) and Machine Learning (ML), based leaching water requirements estimation for saline soils is made using the onsite monitoring of the salinity level and crop field temperature and crop growth stage. Food and Agricultural Organization (FAO) proposed method of leaching requirement is implemented for efficient leaching water estimation. These parameters are used to train and test the Machine learning model to predict the leaching requirement. The performance of machine learning is measured in terms of accuracy.

2020 ◽  
Vol 16 (5) ◽  
pp. 155014772091969
Author(s):  
Hui Cao ◽  
Shubo Liu ◽  
Renfang Zhao ◽  
Xingxing Xiong

Nowadays, wireless sensor network technology is being increasingly popular which is applied to a wide range of Internet of Things. Especially, Power Internet of Things is an important and rapidly growing section in Internet of Thing systems, which benefited from the application of wireless sensor networks to achieve fine-grained information collection. Meanwhile, the privacy risk is gradually exposed, which is the widespread concern for electricity power consumers. Non-intrusive load monitoring, in particular, is a technique to recover state of appliances from only the energy consumption data, which enables adversary inferring the behavior privacy of residents. There can be no doubt that applying local differential privacy to achieve privacy preserving in the local setting is more trustworthy than centralized approach for electricity customers. Although it is hard to control the risk and achieve the trade-off between privacy and utility by traditional local differential privacy obfuscation mechanisms, some existing obfuscation mechanisms based on artificial intelligence, called advanced obfuscation mechanisms, can achieve it. However, the large computing resource consumption to train the machine learning model is not affordable for most Power Internet of Thing terminal. In this article, to solve this problem, IFed was proposed—a novel federated learning framework that let electric provider who normally is adequate in computing resources to help Power Internet of Thing users. First, the optimized framework was proposed in which the trade-off between local differential privacy, data utility, and resource consumption was incorporated. Concurrently, the following problem of privacy preserving on the machine learning model transport between electricity provider and customers was noted and resolved. Last, users were categorized based on different levels of privacy requirements, and stronger privacy guarantee was provided for sensitive users. The formal local differential privacy analysis and the experiments demonstrated that IFed can fulfill the privacy requirements for Power Internet of Thing users.


Author(s):  
Phidahunlang Chyne ◽  
Parag Chatterjee ◽  
Sugata Sanyal ◽  
Debdatta Kandar

Rapid advancements in hardware programming and communication innovations have encouraged the development of internet-associated sensory devices that give perceptions and information measurements from the physical world. According to the internet of things (IoT) analytics, more than 100 IoT devices across the world connect to the internet every second, which in the coming years will sharply increase the number of IoT devices by billions. This number of IoT devices incorporates new dynamic associations and does not totally replace the devices that were purchased before yet are not utilized any longer. As an increasing number of IoT devices advance into the world, conveyed in uncontrolled, complex, and frequently hostile conditions, securing IoT frameworks displays various challenges. As per the Eclipse IoT Working Group's 2017 IoT engineer overview, security is the top worry for IoT designers. To approach the challenges in securing IoT devices, the authors propose using unsupervised machine learning model at the network/transport level for anomaly detection.


Sign in / Sign up

Export Citation Format

Share Document