scholarly journals Digital Fuel Measuring Techniques: A Review

Author(s):  
Heet Patel

Abstract: There have been significant advancements in gasoline metering technology during the last few years. In any event, a key difficulty that all drivers encounter is the inability to obtain volumetric data for the remaining gasoline level, primarily while refuelling the car or driving at reserved fuel levels. As a result, customers find up paying for fuel they don't have. This paper gives an overview of several approaches involving numerous sensors that have been designed to generate a consistent indication of the amount of fuel available. In this study, capacitive, potentiometric, fibre optic, electromagnetic, ultrasonic, and load cell sensors are explored. The aim of this study is to present a report on fuel monitoring strategies that rely on these six sensors. This investigation will aid other researchers working in this field in selecting a sensor for their project. Keywords: fuel measuring, capacitive, electromagnetic, potentiometric, fibre optic, ultrasonic, and load cell.

1987 ◽  
Vol 134 (5) ◽  
pp. 291 ◽  
Author(s):  
K.T.V. Grattan ◽  
J.D. Manwell ◽  
S.M.L. Sim ◽  
C.A. Willson

Metrologiya ◽  
2020 ◽  
pp. 3-15
Author(s):  
Rustam Z. Khayrullin ◽  
Alexey S. Kornev ◽  
Andrew A. Kostoglotov ◽  
Sergey V. Lazarenko

Analytical and computer models of false failure and undetected failure (error functions) were developed with tolerance control of the parameters of the components of the measuring technique. A geometric interpretation of the error functions as two-dimensional surfaces is given, which depend on the tolerance on the controlled parameter and the measurement error. The developed models are applicable both to theoretical laws of distribution, and to arbitrary laws of distribution of the measured quantity and measurement error. The results can be used in the development of metrological support of measuring equipment, the verification of measuring instruments, the metrological examination of technical documentation and the certification of measurement methods.


CHIPSET ◽  
2020 ◽  
Vol 1 (02) ◽  
pp. 61-68
Author(s):  
Anisha Fadia Haya ◽  
Werman kasoep ◽  
Nefy Puteri Novani

This study aims to create a system that can monitor gas cylinders where this device consists of two systems, the first is a system to measure the weight of 3kg LPG gas cylinders to find the remaining gas which will then be displayed on the LCD, and the second the system gives a notification (alarm) if there is a gas leak via SMS. This system consists of Arduino UNO Microcontroller components, Load cell Sensor, MQ-6 Sensor, and SIM800L GSM Module. For overall system testing, the load cell sensor system can display a percentage of the weight value obtained an error rate of 0%, this indicates that the formula used in the program runs according to what is desired. In the MQ-6 sensor system can make the buzzer on at a value >= 700 ppm, the results of the buzzer can live when the detected gas value >= 700 ppm, this is as desired. In the sim800L gsm module system can send leak notifications, the results obtained that the module can send SMS notifications. And the system turns on the buzzer when the LPG gas has reached the minimum limit, the results obtained by the buzzer will sound when the remaining gas value <= 16%. Based on tests conducted on this system the system can measure the desired weight of the cylinder to look for the remaining gas in the form of a percentage and detect a gas leak and then send an SMS notification.


Sign in / Sign up

Export Citation Format

Share Document