scholarly journals Stock Prediction Using Sentiment Analysis and LSTM

Author(s):  
Ms. Anjima K. S

Abstract: The stock market is a difficult area to anticipate since it is influenced by a variety of variables at the same time. The stock exchange is where equities are exchanged, transferred, and circulated. This research proposes a hybrid algorithm that predicts a stock's next day closing prices using sentiment analysis and Long Short Term Memory. The LSTM model seems to be quite popular in time-series forecasting, which is why it was selected for this project. Our proposed methodology makes use of the temporal association between public opinion and stock prices. Part-of-speech tagging is used to do sentiment analysis, and Long Short Term Memory is utilized to predict the stock's next day closing price. When these two factors are combined, we get a good picture of the stock's future. In this project, two main datasets have been used: HCLTECH company stock data and the news related to each stock of the HCL company for each day. The project is implemented by using the python programming language. The python programming language has been used to execute the project. This also incorporates machine learning along with public feedback. Sentiment analysis enables us to evaluate a diversity of political and economic factors, which have a significant impact on the stock market. Keywords: LSTM, sentiment analysis, RNN, Back propagation neural network.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sarah Dong ◽  
Amber Wang

Predicting stock prices has been both challenging and controversial. Since it first spread through the United States, the COVID-19 pandemic has impacted the stock market in a multitude of ways. Thus, stock price prediction has become even more challenging. Recurrent neural networks (RNN) have been widely used in many fields to predict financial time series. In this study, Long Short-Term Memory (LSTM), a special form of RNN, is used to predict the stock market direction for the US airline industry by using NYSE Arca Airline Index (XAL). The LSTM model was optimized through changing different hyperparameters of the model architecture to find the best combination for increased accuracy and performance evaluated by several metrics, including raw RMSE (3.51) and MAPA (4.6%), and very high MAPA (95.4%) and R^2 (0.978).


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hongying Zheng ◽  
Hongyu Wang ◽  
Jianyong Chen

As an important part of the social economy, stock market plays an important role in economic development, and accurate prediction of stock price is important as it can lower the risk of investment decision-making. However, the task of predicting future stock price is very difficult. This difficulty arises from stocks with nonstationary behavior and without any explicit form. In this paper, we propose a novel bidirectional Long Short-Term Memory Network (BiLSTM) framework called evolutionary BiLSTM (EBiLSTM) for the prediction of stock price. In the framework, three independent BiLSTMs correspond to different objective functions and act as mutation individuals, then their respective losses for evolution are calculated, and finally, the optimal objective function is identified by the minimum of loss. Since BiLSTM is effective in the prediction of time series and the evolutionary framework can get an optimal solution for multiple objectives, their combination well adapts to the nonstationary behavior of stock prices. Experiments on several stock market indexes demonstrate that EBiLSTM can achieve better prediction performance than others without the evolutionary operator.


Author(s):  
Ishwarappa Kalbandi ◽  
Ashutosh Jare ◽  
Om Kale ◽  
Himanshu Borole ◽  
Swapnil Navsare

This paper aims to develop an innovative neural network approach to achieve better stock market predictions. Data were obtained from the live stock market for real-time and off-line analysis and results of visualizations and analytics to demonstrate Internet of Multimedia of Things for stock analysis. To study the influence of market characteristics on stock prices, traditional neural network algorithms may incorrectly predict the stock market, since the initial weight of the random selection problem can be easily prone to incorrect predictions. Based on the development of word vector in deep learning, we demonstrate the concept of “stock vector.” The input is no longer a single index or single stock index, but multi-stock high-dimensional historical data. We propose the deep long short-term memory neural network (LSTM) with embedded layer and the long short-term memory neural network with automatic encoder to predict the stock market. In these two models, we use the embedded layer and the automatic encoder, respectively, to vectorize the data, in a bid to forecast the stock via long short-term memory neural network. The experimental results show that the deep LSTM with embedded layer is better.


2021 ◽  
pp. 016555152110065
Author(s):  
Rahma Alahmary ◽  
Hmood Al-Dossari

Sentiment analysis (SA) aims to extract users’ opinions automatically from their posts and comments. Almost all prior works have used machine learning algorithms. Recently, SA research has shown promising performance in using the deep learning approach. However, deep learning is greedy and requires large datasets to learn, so it takes more time for data annotation. In this research, we proposed a semiautomatic approach using Naïve Bayes (NB) to annotate a new dataset in order to reduce the human effort and time spent on the annotation process. We created a dataset for the purpose of training and testing the classifier by collecting Saudi dialect tweets. The dataset produced from the semiautomatic model was then used to train and test deep learning classifiers to perform Saudi dialect SA. The accuracy achieved by the NB classifier was 83%. The trained semiautomatic model was used to annotate the new dataset before it was fed into the deep learning classifiers. The three deep learning classifiers tested in this research were convolutional neural network (CNN), long short-term memory (LSTM) and bidirectional long short-term memory (Bi-LSTM). Support vector machine (SVM) was used as the baseline for comparison. Overall, the performance of the deep learning classifiers exceeded that of SVM. The results showed that CNN reported the highest performance. On one hand, the performance of Bi-LSTM was higher than that of LSTM and SVM, and, on the other hand, the performance of LSTM was higher than that of SVM. The proposed semiautomatic annotation approach is usable and promising to increase speed and save time and effort in the annotation process.


2020 ◽  
Vol 23 (65) ◽  
pp. 124-135
Author(s):  
Imane Guellil ◽  
Marcelo Mendoza ◽  
Faical Azouaou

This paper presents an analytic study showing that it is entirely possible to analyze the sentiment of an Arabic dialect without constructing any resources. The idea of this work is to use the resources dedicated to a given dialect \textit{X} for analyzing the sentiment of another dialect \textit{Y}. The unique condition is to have \textit{X} and \textit{Y} in the same category of dialects. We apply this idea on Algerian dialect, which is a Maghrebi Arabic dialect that suffers from limited available tools and other handling resources required for automatic sentiment analysis. To do this analysis, we rely on Maghrebi dialect resources and two manually annotated sentiment corpus for respectively Tunisian and Moroccan dialect. We also use a large corpus for Maghrebi dialect. We use a state-of-the-art system and propose a new deep learning architecture for automatically classify the sentiment of Arabic dialect (Algerian dialect). Experimental results show that F1-score is up to 83% and it is achieved by Multilayer Perceptron (MLP) with Tunisian corpus and with Long short-term memory (LSTM) with the combination of Tunisian and Moroccan. An improvement of 15% compared to its closest competitor was observed through this study. Ongoing work is aimed at manually constructing an annotated sentiment corpus for Algerian dialect and comparing the results


Sign in / Sign up

Export Citation Format

Share Document