scholarly journals Establishing failure patterns of a Belt Conveyor System configuration

Author(s):  
Olutayo Opeyemi Ogunmilua

Abstract: The conveyor belt is one of the most operational critical equipment’s in the mining industry, they are mostly used in the transportation of crushed materials from the crushing station to where there’ll be further processed. Due to the increasing complexity of belt conveyor systems, managing their integrity has become even more difficult, as they are now used across various industries, environments and carry materials of different weight variations, leaving them susceptible to failures (1). This paper provides an industry specific knowledge on belt conveyor systems, their respective components, and how they are configured using fault tree analysis to predict the different branches of event that can contribute to the failure of a belt conveyor system. The use of fault tree analysis sheds more light on how cascading failures can occur, where the failure of one component leads to the failure of the overall system. (2) Keywords: RCFA, FMEA Opex, FTA, Capex, Eca, Ttf, Ttr.

Author(s):  
Olutayo Opeyemi Ogunmilua

Abstract: The conveyor belt is one of the most operational critical equipment’s in the mining industry, they are mostly used in the transportation of crushed materials from the crushing station to where there’ll be further processed. Due to the increasing complexity of belt conveyor systems, managing their integrity has become even more difficult, as they are now used across various industries, environments and carry materials of different weight variations, leaving them susceptible to failures (1). This paper provides an industry specific knowledge on how Weibull analysis can be used to predict the failure rate of a conveyor belt system, using parameters such as the time to failure (TTF), installation and failure dates, as determinant parameters for the predictions. Several Weibull failure distributions and functions have been used to establish accuracy of results and to create comparisons on the different ways in which risk, unreliability and availability are quantified, using calculated values such as the Shape and scale parameter. The paper utilizes real world case studies in the area of mining, which sheds light on key component failures and their cut sets within the conveyor belt system (2) Keywords: TTF, TTR, Threshold parameter, Repair date, Shape parameter, B10, B15, B20, Scale parameter, ECA, CDF, PDF


Author(s):  
Kamal Hamid ◽  
Nadim Chahine

Wireless communications became one of the most widespread means for transferring information. Speed and reliability in transferring the piece of information are considered one of the most important requirements in communication systems in general. Moreover, Quality and reliability in any system are considered the most important criterion of the efficiency of this system in doing the task it is designed to do and its ability for satisfactory performance for a certain period of time, Therefore, we need fault tree analysis in these systems in order to determine how to detect an error or defect when happening in communication system and what are the possibilities that make this error happens. This research deals with studying TETRA system components, studying the physical layer in theory and practice, as well as studying fault tree analysis in this system, and later benefit from this study in proposing improvements to the structure of the system, which led to improve gain in Link Budget. A simulation and test have been done using MATLAB, where simulation results have shown that the built fault tree is able to detect the system’s work by 82.4%.


Sign in / Sign up

Export Citation Format

Share Document