scholarly journals Reduced Switches Count of Five Level H-bridge Inverter with Integrated Boost Converter in Solar PV System

Author(s):  
Dr. T. Murali Mohan

Abstract: PV systems are becoming more popular now a days, due to increase in the energy demand and it also reduces the environment pollution around the world. This paper proposes a reduced switches count of five-level H-bridge inverter with integrated boost converter in solar PV system. The proposed 5-level reduced switches count H-bridge MLI configuration requires less no.of power semiconductor devices compared to that of conventional MLI topology. In this paper INC MPPT control technique is used, which provides a duty ratio for controlling dc-dc boost converter and allowing the PV cells to operate more efficiently and extract maximum solar energy. The phase shifted sinusoidal pulse width modulation (PSCPWM) control technique is used for controlling the gating pulse of 5-level reduced switches H-bridge inverter. To improve the quality of PV based 5-level reduced switches h-bridge inverter output parameters mainly contribute switching losses and total harmonic distortion. The proposed model is modeled and simulated in MATLAB/SIMULINK software. Keywords: PV array, H-bridge multilevel inverter, boost converter, phase shifted PWM, maximum power point tracking (MPPT), incremental conductance, total harmonic distortion (THD).

2021 ◽  
Vol 13 (2) ◽  
pp. 505
Author(s):  
Sumaya Jahan ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Rabiul Islam ◽  
Safa Haq ◽  
...  

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.


2021 ◽  
Vol 304 ◽  
pp. 01010
Author(s):  
Adel Aljwary ◽  
Ziyodulla Yusupov ◽  
Olimjon Toirov ◽  
Rustam Shokirov

Photovoltaic (PV) system as one part of distributed energy resources is becoming an alternative for low and medium distribution network of microgrid. By the reason of a wide implementation of power electronic and non-linear loads, harmonics distortion is one of the main problems for the power systems. There are several filter types to mitigate the harmonics. The passive filter is distinguished by its simplicity and economical options from another filters. In this paper, the passive single tuned filter (STF) is used to minimize harmonics distortion in standalone PV based microgrid. A solar PV array is modelled as an ideal single diode model (ISDM) and used to supply electrical power to an AC load. The simulation results are executed on MATLAB/Simulink show that STF is effective in mitigating the voltage total harmonic distortion (VTHD) and the current total harmonic distortion (ITHD) with enhancing the output power quality.


2021 ◽  
Vol 16 ◽  
pp. 220-230
Author(s):  
Younis Badran ◽  
Ishaq Sider

In the recent years, solar cooling technologies for buildings have garnered increased attention. This study aimed to evaluate the performance of current solar thermal and solar photovoltaic (PV) air-conditioning technologies. Hence, the annual heating/cooling load profile and energy consumption of a reference building in the climate of Aqaba, Jordan were simulated using the TRNSYS software. The solar thermal and solar PV air-conditioning systems were designed and simulated to compensate the cooling demands. It was found that the annual cooling energy accounted for 96.3 % of the total annual energy demand (heating plus cooling) of the reference building. The solar PV and solar thermal air-conditioning systems compensated for direct cooling by 35.8 % and 30.9 %, respectively, and the corresponding compensations of cooling energy by the storage system were 7.3 % and 11.9 %, respectively. Thus, through this comparative study, we found that the storage system significantly contributed in compensating the cooling demands of the solar thermal system; however, the compensation to direct cooling was lower relative to the solar PV system


Sign in / Sign up

Export Citation Format

Share Document