scholarly journals Minimizing the Cost for Resource Allocation from Multiple Cloud Providers

Author(s):  
Manasa Jonnagadla

Abstract: Cloud computing provides streamlined tools for exceptional business efficiency. Cloud service providers typically offer two types of plans: reserved and on-demand. Restricted policies provide low-cost long-term contracting, while order contracts are expensive and ready for short periods. Cloud resources must be delivered wisely to meet current customer demands. Many current works rely on low-cost resource-reserved strategies, which may be under- or over-provisioning. Resource allocation has become a difficult issue due to unfairness causing high availability costs and cloud demand variability. That article suggests a hybrid approach to allocating cloud services to complex customer orders. The strategy was built in two stages: accommodation stages and a flexible structure. By treating each step as an optimization problem, we can reduce the overall implementation cost while maintaining service quality. Due to the uncertain nature of cloud requests, we set up a stochastic Optimization-based approach. Our technique is used to assign individual cloud resources and the results show its effectiveness. Keywords: Cloud computing, Resource allocation, Demand

Author(s):  
Gudur Vamsi Krishna ◽  
K. F. Bharati

Cloud computing offers streamlined instruments for outstanding business efficiency processes. Cloud distributors typically give two distinct forms of usage plans: Reserved as well as On-demand. Restricted policies provide inexpensive long-term contracting services, while order contracts were very expensive and ready for brief rather than long longer periods. In order to satisfy current customer demands with equal rates, cloud resources must be delivered wisely. Many current works depend mainly on low-cost resource-reserved strategies, which may be under-provisioning and over-provisioning rather than costly ondemand solutions. Since unfairness can cause enormous high availability costs and cloud demand variability in the distribution of cloud resources, resource allocation has become an extremely challenging issue. The hybrid approach to allocating cloud services according to complex customer orders is suggested in that article. The strategy was constructed as a two-step mechanism consisting of accommodation stages and then a versatile structure. In this way, by constructing each step primarily as an optimization problem, we minimize the total cost of implementation, thereby preserving service quality. By modeling client prerequisites as probability distributions are disseminated owing to the dubious presence of cloud requests, we set up a stochastic Optimization-based approach. Using various approaches, our technique is applied, and the results demonstrate its effectiveness when assigning individual cloud resources.


Author(s):  
Вячеслав Вікторович Фролов

The article is devoted to the analysis of modern approaches that ensure the security of cloud services. Since cloud computing is one of the fastest growing areas among information technology, it is extremely important to ensure the safety and reliability of processes occurring in the clouds and to secure the interaction between the client and the provider of cloud services. Given that fears about data loss and their compromise are one of the main reasons that some companies do not transfer their calculations to the clouds. The object of research and analysis of this work are cloud services, which are provided by various cloud service providers. The aim of the study of this work is to compare existing approaches that provide information security for cloud services, as well as offer a new approach based on the principle of diversity. There are many approaches that ensure their safety, using both traditional and cloud-specific. The multi-cloud approach is one of the most promising strategies for improving reliability by reserving cloud resources on the servers of various cloud service providers. It is shown that it is necessary to use diversity to ensure the reliability and safety of critical system components. The principle of diversity is to use a unique version of each resource thanks to a special combination of a cloud computing provider, the geographical location of data centers, cloud service presentation models, and cloud infrastructure deployment models. The differences between cloud providers and which combination of services are preferable to others in terms of productivity are discussed in detail. In addition, best practices for securing cloud resources are reviewed. As a result, this paper concludes that there is a problem of insufficient security and reliability of cloud computing and how to reduce threats in order to avoid a common cause failure and, as a result, loss of confidential data or system downtime using diversity of cloud services.


Author(s):  
N. Malarvizhi ◽  
J. Aswini ◽  
E. A. Neeba

Dynamic cloud computing technique enables resources to be assigned to different clients based on the current demand of each client turning the cloud to a limitless computational platform with limitless storage space which improves the performance of cloud services. To achieve best resource allocation in dynamic hosting frameworks, cloud service providers should provision resources intelligently to all clients. Cloud computing empowers consumers to access online resources using the internet, from anywhere at any time without considering the underlying hardware, technical management, and maintenance problems of the original resources. In this chapter, the authors present a detail study of various resource allocation and other scheduling challenges as well as cloud simulation frameworks tools like CloudSim and ICanCloud.


2020 ◽  
Vol 13 (5) ◽  
pp. 1008-1019
Author(s):  
N. Vijayaraj ◽  
T. Senthil Murugan

Background: Number of resource allocation and bidding schemes had been enormously arrived for on demand supply scheme of cloud services. But accessing and presenting the Cloud services depending on the reputation would not produce fair result in cloud computing. Since the cloud users not only looking for the efficient services but in major they look towards the cost. So here there is a way of introducing the bidding option system that includes efficient user centric behavior analysis model to render the cloud services and resource allocation with low cost. Objective: The allocation of resources is not flexible and dynamic for the users in the recent days. This gave me the key idea and generated as a problem statement for my proposed work. Methods: An online auction framework that ensures multi bidding mechanism which utilizes user centric behavioral analysis to produce the efficient and reliable usage of cloud resources according to the user choice. Results: we implement Efficient Resource Allocation using Multi Bidding Model with User Centric Behavior Analysis. Thus the algorithm is implemented and system is designed in such a way to provide better allocation of cloud resources which ensures bidding and user behavior. Conclusion: Thus the algorithm Efficient Resource Allocation using Multi Bidding Model with User Centric Behavior Analysis is implemented & system is designed in such a way to provide better allocation of cloud resources which ensures bidding, user behavior. The user bid data is trained accordingly such that to produce efficient resource utilization. Further the work can be taken towards data analytics and prediction of user behavior while allocating the cloud resources.


Author(s):  
Olexander Melnikov ◽  
◽  
Konstantin Petrov ◽  
Igor Kobzev ◽  
Viktor Kosenko ◽  
...  

The article considers the development and implementation of cloud services in the work of government agencies. The classification of the choice of cloud service providers is offered, which can serve as a basis for decision making. The basics of cloud computing technology are analyzed. The COVID-19 pandemic has identified the benefits of cloud services in remote work Government agencies at all levels need to move to cloud infrastructure. Analyze the prospects of cloud computing in Ukraine as the basis of e-governance in development. This is necessary for the rapid provision of quality services, flexible, large-scale and economical technological base. The transfer of electronic information interaction in the cloud makes it possible to attract a wide range of users with relatively low material costs. Automation of processes and their transfer to the cloud environment make it possible to speed up the process of providing services, as well as provide citizens with minimal time to obtain certain information. The article also lists the risks that exist in the transition to cloud services and the shortcomings that may arise in the process of using them.


2022 ◽  
pp. 205-224
Author(s):  
Dhiviya Ram

One of the most unique forms of contracting is apparent in cloud computing. Cloud computing, unlike other conventional methods, has adopted a different approach in the formation of binding contract that will be used for the governance of the cloud. This method is namely the clickwrap agreement. Click wrap agreement follows a take it or leave it basis in which the end users are provided with limited to no option in terms of having a say on the contract that binds them during the use of cloud services. The terms found in the contract are often cloud service provider friendly and will be less favourable to the end user. In this article, the authors examine the terms that are often found in the cloud computing agreement as well as study the benefit that is entailed in adopting this contracting method. This chapter has undertaken a qualitative study that comprises interviews of cloud service providers in Malaysia. Hence, this study is a novel approach that also provides insight in terms of the cloud service provider perspective regarding the click wrap agreement.


2020 ◽  
Vol 63 (6) ◽  
pp. 927-941 ◽  
Author(s):  
A A Periola ◽  
A A Alonge ◽  
K A Ogudo

Abstract The Ocean provides benefits of free cooling for cloud computing platforms. However, the use of the ocean for hosting cloud platforms needs to consider three challenges. The first challenge is identifying suitable underwater locations for siting underwater data centres. The second is designing a low-cost method for acquiring underwater data centres. The third is designing a mechanism ensuring that the use of the ocean for hosting data centres is scalable. This paper proposes the intelligent marine compute locator (IMCL) to identify suitable locations for siting underwater data centres. The proposed IMCL determines the specific heat capacity of different ocean locations at multiple epochs. In addition, the conversion of end-of-life vessels into artificial reefs that host open-source disaggregated hardware computing payload is proposed to reduce acquisition costs. The use of disaggregated architecture enables multiple cloud service providers to use limited ocean locations. The formulated metrics are the power usage effectiveness (PUE) and ocean space utilization (OSU). Simulations show that the use of disaggregated design architecture instead of non-disaggregated architecture (existing mechanism) enhances the PUE and OSU by 4.4 and 16.4% on average, respectively.


2013 ◽  
Vol 660 ◽  
pp. 196-201 ◽  
Author(s):  
Muhammad Irfan ◽  
Zhu Hong ◽  
Nueraimaiti Aimaier ◽  
Zhu Guo Li

Cloud Computing is not a revolution; it’s an evolution of computer science and technology emerging by leaps and bounds, in order to merge all computer science tools and technologies. Cloud Computing technology is hottest to do research and explore new horizons of next generations of Computer Science. There are number of cloud services providers (Amazon EC2), Rackspace Cloud, Terremark and Google Compute Engine) but still enterprises and common users have a number of concerns over cloud service providers. Still there is lot of weakness, challenges and issues are barrier for cloud service providers in order to provide cloud services according to SLA (Service Level agreement). Especially, service provisioning according to SLAs is core objective of each cloud service provider with maximum performance as per SLA. We have identified those challenges issues, as well as proposed new methodology as “SLA (Service Level Agreement) Driven Orchestration Based New Methodology for Cloud Computing Services”. Currently, cloud service providers are using “orchestrations” fully or partially to automate service provisioning but we are trying to integrate and drive orchestration flows from SLAs. It would be new approach to provision cloud service and deliver cloud service as per SLA, satisfying QoS standards.


10.29007/j2nc ◽  
2019 ◽  
Author(s):  
Kenneth Ayong ◽  
Rennie Naidoo

The adoption of cloud computing among SMEs in developing countries, particularly South Africa, is still very low. The purpose of this study is to develop a conceptual model to assess the critical factors that influences South African SMEs to adopt cloud services. This paper proposes an integrated conceptual model that incorporates critical factors from the diffusion of innovation (DOI) theory, institutional theory, transaction cost theory, organisation theory, information security theory, and trust theories. Cloud computing adoption research dominated by the DOI perspective, can benefit from further cross- fertilization with different theories to explain and predict patterns of cloud services use in the SME context. This model is expected to offer deeper insights and practical value to SME decision makers, cloud service providers, regulatory agencies and government responsible for establishing cloud computing adoption strategies for SMEs in South Africa. We intend to apply this model to survey research in future studies.


2021 ◽  
Author(s):  
Md Ahsan Ullah

Cloud service broker (CSB) as an emerging technology intermediates heterogeneous multiple cloud services for both the providers and consumers. Recently, Cloud computing & mobile cloud computing applications (MCA) have gained an enormous popularity, which has led to an increasing need for the development of platform independent Middleware/CSB to support all types of cloud service consumer applications including x86*x64 based standard OS & ARM based mobile applications, web browsers, etc. Developing Platform Independent Hybrid CSB, however, is not an easy task. Developers have to deal with difficulties inherent from the different cloud controllers, cloud service providers environments, clients’ application types, network connection types (wired, wireless), GPS (Global Positioning Systems) information of cloud resources and clients’ etc. In this thesis, the proposed design of a middleware/CSB that abstracts the real-time resources of various clouds (private, public, home, Local) and stores the resources in its own Database. It will also store clients requests then analyzes the request to find the nearest available servers which is running the appropriate applications. Then the CSB will forward the destination servers information to the clients. Thesis goal is to achieve context awareness, location awareness, platform independence, portability, efficiency, and usability. Portability is achieved by following the J2ME platform specifications. The middleware has been implemented and tested on a real time Openstack cloud using by our newly designed Android Clients and platform independent Mozilla Firefox browser. The performance measurements of the middleware show that it achieves its efficiency requirements. Furthermore, the middleware’s database can be used for resource algorithm, pattern analysis, and for future requirements.


Sign in / Sign up

Export Citation Format

Share Document