scholarly journals Mitigating Faults and Revenue Losses Using Fault Detectors at Trans Amadi Industrial Layout, Port Harcourt Rivers State

Author(s):  
Nwoke G. O.

Abstract: Transmission line fault detection is an important aspect of monitoring the health of a power plant since it indicates when suspected faults could lead to catastrophic equipment failure. This research looks at how to detect generator and transmission line failures early and investigates fault detection methods using Artificial Neural Network approaches. Monitoring generator voltages and currents, as well as transmission line performance metrics, is a key monitoring criterion in big power systems. Failures result in system downtime, equipment damage, and a high danger to the power system's integrity, as well as a negative impact on the network's operability and dependability. As a result, from a simulation standpoint, this study looks at fault detection on the Trans Amadi Industrial Layout lines. In the proposed approach, one end's three phase currents and voltages are used as inputs. For the examination of each of the three stages involved in the process, a feed forward neural network with a back propagation algorithm has been used for defect detection and classification. To validate the neural network selection, a detailed analysis with varied numbers of hidden layers was carried out. Between transmission lines and power customers, electrical breakdowns have always been a source of contention. This dissertation discusses the use of Artificial Neural Networks to detect defects in transmission lines. The ANN is used to model and anticipate the occurrence of transmission line faults, as well as classify them based on their transient characteristics. The results revealed that, with proper issue setup and training, the ANN can properly discover and classify defects. The method's adaptability is tested by simulating various defects with various parameters. The proposed method can be applied to the power system's transmission and distribution networks. The MATLAB environment is used for numerous simulations and signal analysis. The study's main contribution is the use of artificial neural networks to detect transmission line faults. Keywords: Faults and Revenue Losses

2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


2007 ◽  
Vol 364-366 ◽  
pp. 713-718 ◽  
Author(s):  
Dong Woo Kim ◽  
Young Jae Shin ◽  
Kyoung Taik Park ◽  
Eung Sug Lee ◽  
Jong Hyun Lee ◽  
...  

The objective of this research was to apply the artificial neural network algorithm to predict the surface roughness in high speed milling operation. Tool length, feed rate, spindle speed, cutting path interval and run-out were used as five input neurons; and artificial neural networks model based on back-propagation algorithm was developed to predict the output neuron-surface roughness. A series of experiments was performed, and the results were estimated. The experimental results showed that the applied artificial neural network surface roughness prediction gave good accuracy in predicting the surface roughness under a variety of combinations of cutting conditions.


2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Anamika Yadav ◽  
Yajnaseni Dash

Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.


2012 ◽  
Vol 12 (1) ◽  
pp. 37-45 ◽  
Author(s):  
G-A. Tselentis ◽  
E. Sokos

Abstract. In this paper we suggest the use of diffusion-neural-networks, (neural networks with intrinsic fuzzy logic abilities) to assess the relationship between isoseismal area and earthquake magnitude for the region of Greece. It is of particular importance to study historical earthquakes for which we often have macroseismic information in the form of isoseisms but it is statistically incomplete to assess magnitudes from an isoseismal area or to train conventional artificial neural networks for magnitude estimation. Fuzzy relationships are developed and used to train a feed forward neural network with a back propagation algorithm to obtain the final relationships. Seismic intensity data from 24 earthquakes in Greece have been used. Special attention is being paid to the incompleteness and contradictory patterns in scanty historical earthquake records. The results show that the proposed processing model is very effective, better than applying classical artificial neural networks since the magnitude macroseismic intensity target function has a strong nonlinearity and in most cases the macroseismic datasets are very small.


2017 ◽  
Vol 89 (2) ◽  
pp. 211-230 ◽  
Author(s):  
Ney Rafael Secco ◽  
Bento Silva de Mattos

Purpose Multidisciplinary design frameworks elaborated for aeronautical applications require considerable computational power that grows enormously with the utilization of higher fidelity tools to model aeronautical disciplines like aerodynamics, loads, flight dynamics, performance, structural analysis and others. Surrogate models are a good alternative to address properly and elegantly this issue. With regard to this issue, the purpose of this paper is the design and application of an artificial neural network to predict aerodynamic coefficients of transport airplanes. The neural network must be fed with calculations from computational fluid dynamic codes. The artificial neural network system that was then developed can predict lift and drag coefficients for wing-fuselage configurations with high accuracy. The input parameters for the neural network are the wing planform, airfoil geometry and flight condition. An aerodynamic database consisting of approximately 100,000 cases calculated with a full-potential code with computation of viscous effects was used for the neural network training, which is carried out with the back-propagation algorithm, the scaled gradient algorithm and the Nguyen–Wridow weight initialization. Networks with different numbers of neurons were evaluated to minimize the regression error. The neural network featuring the lowest regression error is able to reduce the computation time of the aerodynamic coefficients 4,000 times when compared with the computing time required by the full potential code. Regarding the drag coefficient, the average error of the neural network is of five drag counts only. The computation of the gradients of the neural network outputs in a scalable manner is possible by an adaptation of back-propagation algorithm. This enabled its use in an adjoint method, elaborated by the authors and used for an airplane optimization task. The results from that optimization were compared with similar tasks performed by calling the full potential code in another optimization application. The resulting geometry obtained with the aerodynamic coefficient predicted by the neural network is practically the same of that designed directly by the call of the full potential code. Design/methodology/approach The aerodynamic database required for the neural network training was generated with a full-potential multiblock-structured code. The training process used the back-propagation algorithm, the scaled-conjugate gradient algorithm and the Nguyen–Wridow weight initialization. Networks with different numbers of neurons were evaluated to minimize the regression error. Findings A suitable and efficient methodology to model aerodynamic coefficients based on artificial neural networks was obtained. This work also suggests appropriate sizes of artificial neural networks for this specific application. We demonstrated that these metamodels for airplane optimization tasks can be used without loss of fidelity and with great accuracy, as their local minima might be relatively close to the minima of the original design space defined by the call of computational fluid dynamics codes. Research limitations/implications The present work demonstrated the ability of a metamodel with artificial neural networks to capture the physics of transonic and subsonic flow over a wing-fuselage combination. The formulation that was used was the full potential equation. However, the present methodology can be extended to model more complex formulations such as the Euler and Navier–Stokes ones. Practical implications Optimum networks reduced the computation time for aerodynamic coefficient calculations by 4,000 times when compared with the full-potential code. The average absolute errors obtained were of 0.004 and 0.0005 for lift and drag coefficient prediction, respectively. Airplane configurations can be evaluated more quickly. Social implications If multidisciplinary optimization tasks for airplane design become more efficient, this means that more efficient airplanes (for instance less polluting airplanes) can be designed. This leads to a more sustainable aviation. Originality/value This research started in 2005 with a master thesis. It was steadily improved with more efficient artificial neural networks able to handle more complex airplane geometries. There is a single work using similar techniques found in a conference paper published in 2007. However, that paper focused on the application, i.e. providing very few details of the methodology to model aerodynamic coefficients.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Anamika Jain

This paper analyses two different approaches of fault distance location in a double circuit transmission lines, using artificial neural networks. The single and modular artificial neural networks were developed for determining the fault distance location under varying types of faults in both the circuits. The proposed method uses the voltages and currents signals available at only the local end of the line. The model of the example power system is developed using Matlab/Simulink software. Effects of variations in power system parameters, for example, fault inception angle, CT saturation, source strength, its X/R ratios, fault resistance, fault type and distance to fault have been investigated extensively on the performance of the neural network based protection scheme (for all ten faults in both the circuits). Additionally, the effects of network changes: namely, double circuit operation and single circuit operation, have also been considered. Thus, the present work considers the entire range of possible operating conditions, which has not been reported earlier. The comparative results of single and modular neural network indicate that the modular approach gives correct fault location with better accuracy. It is adaptive to variation in power system parameters, network changes and works successfully under a variety of operating conditions.


Author(s):  
S. Kumar ◽  
S. Singh ◽  
V K Mishra

Artificial neural networks (ANN) is one of the most dynamic research and application areas for pattern classification. ANN is the branch of Artificial Intelligence (AI). The network is trained by 'n' number of algorithm like back propagation algorithm. The different combinations of performance functions are used for training the ANN. The back propagation neural network (BPNN) can be used as a highly successful algorithm for pattern classification with suitable combination of performance functions while training and learning ANN. When the maximum likelihood algorithm was compared with back propagation neural network method, the BPNN was more accurate than other algorithms. A Multilayer feed-forward neural network algorithm is also used for pattern classification. However BPNN gives more effective results than other pattern classification algorithms. Handwriting Recognition (or HWR) is the ability of a machine to receive and interpret handwritten input from different sources like paper documents, photographs, touch-screens and other input devices. Various performance functions is examined in this paper so as to get to a conclusion that which function would be better for usage in the network to produce an efficient and effective system. The training of back propagation neural network is done with the application of Offline Handwritten Character Recognition.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Sign in / Sign up

Export Citation Format

Share Document