scholarly journals Optimization of Energy Efficiency for Electric Power Distribution System Losses

Author(s):  
Okorie N. S.

Abstract: This study evaluated the existing electric power network of Mile 2 Diobu zone, Port Harcourt distribution network which consists of four (4) 11kV distribution feeders namely; Ojoto, Nsukka, Udi and Silverbird. This work considered Ojoto and Nsukka Street distribution network for improved power quality. The three (3) 33/11kv injection substations are fed from 165 MVA transmission station (PH Town) at Amadi junction by Nzimiro. Collection and analysis of data collected from the injection substations that supply electricity to mile 2 Diobu, Port Harcourt was the first consideration. The distribution network was modeled in Electrical Transient Analyzer Program (ETAP) using Newton-Raphson Load Flow equations. The simulation result of the existing condition network shows that the network has low voltage profile problem on Nsukka network and overloading of distribution transformers on Ojoto networks. The following optimization techniques are applied: up-gradation of distribution transformers, and transformer load tap changer to improve the distribution network for Mile 2 Diobu, Port Harcourt electrical power network. The simulation result of the improved distribution network for Mile 2 Diobu, Port Harcourt power network shows that the voltage profile Nsukka network has improved within the statutory limit which is between 95.0 -105.0% and the loading of the distribution transformers on Ojoto and Nsukka networks are all below 70% required capacity. Keywords: Optimization, Energy Efficiency Distribution

Author(s):  
Chinweike Innocent Amesi ◽  
Tekena Kashmony Bala ◽  
Anthony O. Ibe

This paper examined the power flow status of the Port Harcourt Town (Zone 4) distribution networks to improve the performance. The network consists of 18 injection substations fed from 4 different sizes of transformers with a total power rating of 165 MVA, 132/33kV at the Port Harcourt Town sub-transmission substation. Gauss-seidel power flow algorithm was used to analyse the network in Electrical Transient Analyzer Program software (ETAP 12.6) to determine the various bus operating voltages, power flow, and over or under-loaded Transformers’ units. From the base-case simulation results obtained, it shows that these injection distribution transformers (PH Town 106.3%, RSU 90.5%, Marine Base 86.5%, UTC 87.9%, Nzimiro 89.5%, and Borokiri 88.7%) were overloaded on the network and the operating voltages observed for (PH Town 95.1%, RSU 83.0%, Marine Base 83.4%, UTC 82.8%, Nzimiro 85.2%, and Borokiri 82.1%) indicates low voltage profile. However, using network reconfiguration technique as proposed in this paper; there was reduction in the percentage loading of the said Transformers as it was upgraded to affect positively on its lifespan with (PH Town 44.1%, RSU 65.3%, Marine Base 60.7%, UTC 47.3%, Nzimiro 61.3%, and Borokiri 52.0%) loading,  and the bus voltage profiles was improved for (PH Town 100%, RSU 98.4%, Marine Base 98.8%, UTC 98.2%, Nzimiro 98.6%, and Borokiri 99.1%) with additional facilities. It is recommended that the power infrastructure facilities in Port Harcourt Town distribution network be immediately upgraded to reduce losses and improve the electricity supply to consumers. Also, in regard to these analyses, the sub-transmission substation requires 240 MW of power for effective power delivery.


2019 ◽  
Vol 84 ◽  
pp. 02002
Author(s):  
Waldemar Dolega

In this paper, an analysis of issues related to development of national electric power network infrastructure in aspect of electric energy security is performed. Profile of network infrastructure in area of transmission and distribution is performed. Threats for electric energy supply security connected with transmission and distribution infrastructure are discussed. Both transmission and distribution electric power network are adapted for presently occurred typical conditions of electric energy demand and realization of internal tasks in normal conditions, but can create potential threat for electric energy supply security. In the context of forecasted increase of electric energy demand, inadequate power in National Electric Power System (NEPS) in domestic sources and available through intersystem connections, uneven location of sources and consumers at shortage of proper network transmission capacities, necessity of improvement of quality and electric energy supply reliability to final consumers and intensive development of renewable energy sources, present network infrastructure in area of transmission and distribution will be insufficient. Development of 400 and 220 kV transmission network, 110 kV distribution network especially in area of cities, MV distribution network especially in rural areas and realization of investments for improvement of export-import possibilities of NEPS will be necessary. Challenges for transmission and distribution system operators in area of network development are performed. They concern mainly investment sphere and area connected with preparation and construction of network investments.


Author(s):  
Ivan Nadtoka ◽  
◽  
Pyotr Osadchiy ◽  
Vladimir Tropin ◽  
◽  
...  

The features of applying the «open triangle» scheme in the structure of a rural low-voltage distribution network with a voltage of 220 V are studied from the standpoint of achieving a certain energy efficiency. The energy effect is estimated by the criterion of the relative value of the additional power losses in the conductors of a three-wire line of a 220 V network caused by reactive power and load asymmetry. The load is modeled by two power receivers connected to the phase-to-phase voltage, the general output of the power receivers is grounded, which forms the «open triangle» circuit. The energy characteristics of the active load, active load with capacitive corrective element, active load with capacitive and inductive corrective elements are analyzed; and also the most practical case – active-inductive load with various values of reactive power factors -0,1; 0,2; 0,3 and capacitive corrective element. An important feature of applying the «open triangle» scheme in the structure of a rural low-voltage distribution network with a voltage of 220 V, from the standpoint of achieving practically necessary and sufficient energy efficiency - not exceeding 10 % of the additional power losses, is the ability to compensate for reactive power and balancing the phase currents of the network line using only one corrective capacitor of relatively low power - about 50 % of the active power of one power receiver.


2019 ◽  
Vol 10 (1) ◽  
pp. 26-37
Author(s):  
Redaksi Tim Jurnal

Distribution system is very important in the distribution of electric power to the load. Therefore, a good and efficient distribution system is needed. The underlying cause of poor electric power distribution system is the amount of voltage drop values in the existing system. In the electric power distribution, 20 kV medium-voltage and 380/220V low voltage networks are used. The distribution system of Gandum Feeder in Angke Substation uses medium-voltage network with Underground Cable channel. They are used because of the towering buildings and the dense population in the area. It is known that the longest the channel and the load current are, the greater the voltage drop. From the result of the voltage drop calculation of Feeder Gandum in Angke Substation, which uses manual calculation and ETAP 12.6.0 program, it showed a slight difference in the result. The result of the voltage drop obtained from manual calculation showed that the percentage value of voltage is 1,94%, while the result obtained from ETAP 12.6.0 program showed that the percentage value is 2,01% These results are still in the PLN standard, because it has not exceeded the specified standard that is -10% of its nominal voltage.


2020 ◽  
Vol 16 (1) ◽  
pp. 155014772090362 ◽  
Author(s):  
Aleksandar Stanimirović ◽  
Miloš Bogdanović ◽  
Milena Frtunić ◽  
Leonid Stoimenov

This article describes the low-voltage distribution network monitoring system developed for the Electric Power Industry of Serbia electricity distribution company. The implemented system is deployed in two different regional centers of the Electric Power Industry of Serbia and is being used in production for the past 4 years. During this period, it has collected real-life data which was used to analyze and investigate low-voltage distribution network performances as well as to identify and study energy losses in low-voltage distribution networks. The main contribution of this article is represented by the real-life monitoring and control infrastructure implementation insights. Furthermore, the system we describe in this article became a part of company’s enterprise information system, thus becoming integrated with heterogeneous information sources. This integration generated additional values to the company since the collected measurements started to improve the quality of the decision-making system for everyday business processes.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3171
Author(s):  
Prem Prakash ◽  
Duli Chand Meena ◽  
Hasmat Malik ◽  
Majed A. Alotaibi ◽  
Irfan Ahmad Khan

The objective of the present paper is to study the optimum installation of Non-dispatchable Distributed Generations (NDG) in the distribution network of given sizes under the given scheme. The uncertainty of various random (uncertain) parameters like load, wind and solar operated DG besides uncertainty of fuel prices has been investigated by the three-point estimate method (3-PEM) and Monte Carlo Simulation (MCS) based methods. Nearly twenty percent of the total number of buses are selected as candidate buses for NDG placement on the basis of system voltage profile to limit the search space. Weibull probability density function (PDF) is considered to address uncertain characteristics of solar radiation and wind speed under different scenarios. Load uncertainty is described by Standard Normal Distribution Function (SNDF). To investigate the solution of optimal probabilistic load flow (OPLF) three-point PEM-based technique was applied. For optimization, Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GA-PSO hybrid-based Artificial Intelligent (AI) based optimization techniques are employed to achieve the optimum value of the multi-objectives function. The proposed multi-objective function comprises loss and different costs. The proposed methods have been applied to IEEE 33- bus radial distribution network. Simulation results obtained by these techniques are compared based on loss minimization capability, enhancement of system bus voltage profile and reduction of cost and fitness functions. The major findings of the present study are the PEM-based method which provides almost similar results as MCS based method with less computation time and as far as loss minimization capacity, voltage profile improvement etc. is concerned, the hybrid-based optimization methods are compared with GA and PSO based optimization techniques.


2018 ◽  
Vol 8 (3) ◽  
pp. 2998-3003
Author(s):  
M. A. Aman ◽  
S. Ahmad ◽  
B. Noor ◽  
F. W. Karam

Electric power systems are enforced to operate near to their stability limit due to the fast increase in power demand. Therefore, voltage stability has become a primary concern. The main cause of voltage variations is the imbalance between generation and consumption. In order to mitigate variations in voltage profile, most of the modern electric power systems are adopting new emerging technologies such as distributed generation. Validation of standard voltage optimization is a difficult task when distributed generation is integrated to medium and low voltage networks. Integration of distributed generation (DG) will have diverse impacts on voltage levels when connected un-deterministically to the electric distribution system. This paper analyzes both the impacts of un-deterministic large and small size DG on voltage profile. Feasible solutions by incorporating reactors and increasing cross sectional area of cables, variation in voltage profile were mitigated. Detailed simulations were performed in ETAP by modeling and evaluating Kohat road grid station situated in Peshawar, Pakistan. The results anticipated that this approach can be useful to ensure standard voltage profile and better utilization of un-deterministic DG units.


Sign in / Sign up

Export Citation Format

Share Document