scholarly journals Design and Simulation of Rectangular Microstrip Patch Antenna with Triple Slot for X Band

Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip patch antenna with triple slot for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.4 GHz & 11 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band

Author(s):  
Neha Afreen

Abstract: In the present work an attempt has been made to design and simulation of rectangular microstrip double patch antenna for X band using microstrip feed line techniques. HFSS High frequency simulator is used to analyse the proposed antenna and simulated the result on the return loss, radiation pattern and gain of the proposed antenna. The antenna is able to achieve in the range of 8-12 GHz for return loss of less than -10 dB. The operating frequency of the proposed antenna is 8.7 GHz with dielectric substrate, ARLON of = 2.5 and h= 1.6mm. Keywords: ARLON substrate material, FEM, Microstrip Feed Line, X band


2021 ◽  
Vol 21 (2) ◽  
pp. 140
Author(s):  
Teguh Praludi ◽  
Yana Taryana ◽  
Ken Paramayudha ◽  
Budi Prawara ◽  
Yusnita Rahayu ◽  
...  

This paper presents the design, simulation, realization and analysis of flexible microstrip patch antenna for S-band applications. The proposed design also adopts the conformal structure by utilizing flexible substrate. Conformal or flexible structure allows the antenna to fit with any specified shape as desired. The antenna patch dimensions is 43 mm × 25 mm without SMA connector. The patch is etched on the flexible dielectric substrate, pyralux FR 9111, with a relative dielectric constant of εr = 3 and the thickness of substrate, h = 0.025 mm. The antenna is designed to resonate at 3.2 GHz. The return loss (RL) of the simulation is -35.80 dB at the center frequency of 3.2 GHz. The fabricated antenna prototype was measured at different bending angles scenarios including 0º, 30º, 60º, and 90º. The measurement of antenna prototype shows that the center frequency is shifted to the higher frequency of 3.29 GHz, compared to the simulation result. Among these scenarios, measurement at bending angle of 90º gives the best performance with RL = - 31.38 dB at 3.29 GHz, the bandwidth is 80 MHz, and the impedance ZA = 48.36 + j2.04 Ω. Despite a slight differences from simulation results, the designed antenna still performs well as expected.


This paper presents the prototype and simulations of a compact rectangular microstrip patch antenna for ultra-wideband applications. The proposed antenna is printed on FR4 (Flame Retardant) substrate with relative permittivity of 4.4, dielectric loss tangent of 0.0024 and the dimensions of 57 × 25 × 1.57 mm3 . The radiating patch of the antenna is loaded with two rectangular stubs along its upper and lower edges and an equilateral triangular notch is truncated from the reduced ground plane to achieve optimum results in terms of bandwidth and reflection coefficient. It is fed along the centerline of symmetry by 50Ω microstrip feed line. The simulated return loss ( ) characteristics show that the proposed antenna has a capability of covering the wireless bands from 0.17GHz to 7.25GHz with impedance bandwidth of 7.08GHz and exhibits a peak gain of 5dB at 7.25GHz which is acceptable for UWB systems.


Author(s):  
Dawit Fistum

<p>This paper presents an efficient proximity coupled feed rectangular microstrip patch antenna with reduced harmonic radiation. The proposed antenna resonates in S-band at frequency of 2.45 GHz with bandwidth of 88.5 MHz. A very good return loss of -47.0546 dB is obtained for the Microstrip patch antenna. The antenna matching can be achieved with an appropriate line-patch overlap, but with a careful design consideration. Not only the good matching of the fundamental mode, but also the effect on the harmonic radiation from the other patch modes has been considered. Varying the length &amp; location of the microstrip feed line and introducing a defect in the ground plane- the harmonic radiation from the other patch mode is reduced to minimum.</p>


2018 ◽  
Vol 7 (2.7) ◽  
pp. 532 ◽  
Author(s):  
R Siri Chandana ◽  
P Sai Deepthi ◽  
D Sriram Teja ◽  
N Veera JayaKrishna ◽  
M Sujatha

This article is about a single band microstrip patch antenna used for the 5G applications. And this antenna is suitable for the millimeter wave frequency. The patch antenna design consists of 2 E shaped slots and 1 H shaped slot. These slots are loaded on the radiating patch with the 50 ohms microstrip feed line. For the simulation purpose, Rogers’s RT5880 dielectric substrate with relative permittivity of 2.2 and loss tangent of 0.0009 is used. The design and simulation of the antenna is done using HFSS (High Frequency Structure Simulator) software. The results are simulated for the parameters Return loss, VSWR, 3D Radiation pattern. The proposed antenna has a return loss of -42.4383 at 59 GHz millimeter wave frequency. 


Author(s):  
Dawit Fitsum ◽  
Dilip Mali ◽  
Mohammed Ismail

<p>This paper presents Dual-Band proximity coupled feed rectangular Microstrip patch antenna with slots on the radiating patch and Defected Ground Structure. Initially a simple proximity coupled feed rectangular Microstrip patch antenna resonating at 2.4 GHz is designed. Etching out a ‘Dumbbell’ shaped defect from the ground plane and ‘T’ shaped slot from the radiating patch of the proximity coupled feed rectangular Microstrip patch antenna, results in a Dual-Band operation, i.e., resonating at 2.4 GHz and 4.5 GHz; with 30.3 % and 18.8% reduction in the overall area of the patch and the ground plane of the reference antenna respectively. The proposed antenna resonates in S-band at frequency of 2.4 GHz with bandwidth of 123.6 MHz and C-band at frequency of 4.5 GHz with bandwidth of 200 MHz, and a very good return loss of -22.1818 dB and -19.0839 dB at resonant frequency of 2.4 GHz and 4.5 GHz respectively is obtained. The proposed antenna is useful for different wireless applications in the S-band and C-band.</p>


Sign in / Sign up

Export Citation Format

Share Document