scholarly journals Investigation on Performance of Microstrip Patch Antenna for a Practical Wireless Local Area Network (WLAN) Application

Author(s):  
Taiwo Samuel Aina

Abstract: The performance of a microstrip patch antenna for a practical wireless local area network application is investigated in this research. This design is built around the transmission line concept. The antenna design substrate is FR4 (lossy) with a dielectric constant (Er) of 4.3 dielectric material, and the ground and patch materials are copper (annealed). The substrate is 71.62mm in width and 55.47mm in length. The height of the dielectric material is 1.6mm, which is the normal size for FR4 material. The conducting patch element has a width of 35.81mm and a length of 27.73mm for a resonance frequency of 2.573 GHz. A simulation with CST studio suite was used to optimise the antenna design. Keywords: Microstrio patch antenna, CST suite, WLAN application, Transmission line, Antenna design

Author(s):  
Gaurav Varma ◽  
Rishabh Kumar Baudh

The aim is to design a Rhombus microstrip patch antenna. The antenna operates at FL=1.447 GHz to FH=2.382 GHz frequency for wireless local area network (WLAN). This antenna operates at f=1.914 GHz resonant frequency. In microstrip patch antenna, many types of shapes like circular, triangular, rectangular, square, ring shape, etc. are used, but in this design a rectangular shape is used. In proposed antenna, the accuracy and efficiency are increased. Integral equation three-dimensional (3D) software (IE3D) is used for the optimize of the rhombus cross-slotted antenna design. The IE3D uses a full wave method of moment simulator. This antenna fabricated on FR4 glass epoxy double-sided copper dielectric material with relative permittivity of ∈ =4.4, thickness h= 1.60mm, and loss tangent is 0.013.


2016 ◽  
Vol 4 (3) ◽  
pp. 80-84
Author(s):  
Meenal Kate ◽  
Anjana Goen

This paper present a comparative study between two works proposed for microstrip patch antenna dual band operations. The comparison is made between a dual-band planar antenna with a compact radiator for 2.4/5.2/5.8-GHz Wireless Local Area Network (WLAN) applications and a printed circular microstrip patch antenna with a four rectangular shape strip and co planar rectangular ground plane antenna. The comparative analysis between these two antennas consist of following parameters such as dimensions, bandwidth, gain, return loss, directivity etc.


2017 ◽  
Vol 7 (1.2) ◽  
pp. 191 ◽  
Author(s):  
Ajay Dadhich ◽  
J. K. Deegwal

A Multiband Microstrip Patch Antenna with rectangular slots on patch is proposed for Bluetooth and C band applications. The proposed antenna is fabricated by etching rectangular patch of  dimension on a lossy FR-4 substrate with dimensions 40 mm (L) × 40 mm (W) × 1.6 mm (h) , relative permittivity  =4.4 and loss tangent δ = 0.025. 50 ohm microstrip feed line with inset feed is used for proper impedance matching. Proposed antenna is simulated on Computer Simulation Tool (CST) microwave studio suite software and measurement is done on Network Analyzer (VNA). The proposed multiband antenna can be used for IEEE 802.15.1 (operating in 2.402-2.480 GHz band), wireless local area network and other wireless communication applications.


The design and simulation of defected ground structure microstrip patch antenna for Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) applications are additionally testing as the antenna ought to be little in size, light in weight, easy to manufacture, minimal effort, and simplicity of joining in such gadgets. The target of this work is to plan and creation of an antenna which will be appropriate for WiMAX and WLAN applications with improved gain and optimized bandwidth. WiMAX depend on gauges, for example, IEEE 802.16, intended to work between 2-11 GHz and spreads S, C and X microwave recurrence groups. Metropolitan Area Network (MAN) conventions are in the 2.3 GHz, 2.5 GHz, 3.5 GHz and 5.8 GHz ranges. A planar antenna with imperfect ground plane is proposed and manufactured, 3.5/5.5 GHz WiMAX band, 5.2/5.8 GHz WLAN band, 4/6 GHz satellite correspondence, and different remote correspondence applications. This structure canvassed two groups in which it is extending from 3.34-8.72 GHz implies a band of 5.38 GHz with impedance BW 89.22%. The resonating frequencies are 3.92 GHz and 7.88 GHz with return loss - 35.59 dB and - 31.99 dB, VSWR 1.03 and 1.05 and gain 9.46 dB and 0.14 dB respectively. The second band covers 9.22-13.06 GHz implies a band of 3.84 GHz with impedance BW 34.47%. This resounds at 10.58 GHz with return loss - 55.52 dB, VSWR 1.00 and gain is 7.09 dB. The deliberate outcomes are in great concurrence with reproduced consequences of the proposed antenna.


A triple band microstrip-fed patch antenna is presented which contains the radiating structure having rectangular zigzag shape patch and an altered ground structure with a swastic shape design. This modified ground plane actually acts as a defected ground structure (DGS). Both the modified ground plane and radiating patch are perfect electric conductors. The patch is imprinted on a substrate named as Epoxy Glass FR-4 having thickness 1.6 mm, relative permittivity 4.4, and loss tangent 0.0024. The designed microstrip patch antenna (MPA) is able to generate three specific operating bands viz. 11.9–13.6 GHz, 5.71–5.82 GHz, 4.5-4.6 GHz with adequate bandwidth of 1.64 GHz, 110 MHz and 100 MHz and corresponding return loss of -32dB, -23dB, -14.3dB respectively covering Wireless Local Area Network (WLAN), C-band and Ku-band applications. A parametric study has been performed for the rectangular slots located in the patch. Proposed MPA is simulated using Computer Simulation Technology Microwave Studio Version 14.0 (CST MWS V14.0). Lastly, the fabrication of the proposed antenna with optimized parameters has been accomplished and measured results for S-parameter magnitude have been discussed


Author(s):  
Nada N. Tawfeeq

Microwave engineers have been known to designedly created defects in the shape of carved out patterns on the ground plane of microstrip circuits and transmission lines for a long time, although their implementations to the antennas are comparatively new. The term Defected Ground Structure (DGS), precisely means a single or finite number of defects. At the beginning, DGS was employed underneath printed feed lines to suppress higher harmonics. Then DGS was directly integrated with antennas to improve the radiation characteristics, gain and to suppress mutual coupling between adjacent elements. Since then, the DGS techniques have been explored extensively and have led to many possible applications in the communication industry. The objective of this paper is to design and investigate microstrip patch antenna that operates at 2.4 GHz for Wireless Local Area Network WLAN IEEE 802.11b/g/n, ,Zigbee, Wireless HART, Bluetooth and several proprietary technologies that operate in the 2.4 GHz band. The design of the proposed antenna involves using partially Defected Ground Structure and circular/cross slots and compare it to the traditional microstrip patch antenna.  The results show improvement in both the gain of 3.45 dB and the S11 response of -22.3 dB along with reduction in the overall dimensions of the antenna. As a conclusion, the performance of the antenna has been improved through the incorporation with the DGS and slots structures regarding the S11 response and the gain. The proposed antenna become more compact. Finally, the radiation pattern of proposed antenna has remained directional in spite of adding slots on the ground plane.


Author(s):  
Dr. K. RameshBabu

A Co planner Wave Guide (CPWG) fed with octagonal patch antenna is modified from their respective rectangular patch are presented for WLAN application. The dielectric material applied in the design process for both co planar and micro strip patch antenna is FR4 Epoxy Glass, which has relative permittivity of 4.4 and substrate height 1.6mm. Antenna parameters used to check the performance. A comparison is made between the octagonal co-planar antenna and octagonal micro strip antenna available. Ansys HFSS is used for antenna design and analysis. Both designed antennas are suitable for wireless local area network application and the design parameters of the antenna are optimized to resonate at 3GHz frequencies for WLAN applications. It has been found that octagonal micro strip patch antennas have lower return loss and are more directive than co planar patch antenna. High directivity of octagonal micro strip antenna is due to the presence of ground plane under the substrate of antenna. The results obtained by simulations have also shown that octagonal co planar patch antennas have high radiation efficiency (a measure of the power radiated through the antenna as an electromagnetic wave to the power fed to the antenna terminals) and which implies a wider bandwidth as compared to an octagonal micro strip patch antennas. The radiation efficiency obtained for micro strip patch antenna is 24% and that for co planar patch antenna is 67%, the directivity for micro strip patch antenna is 3.75 dB and that for a co-planar patch antenna is 3.25 dB.


Author(s):  
Sunanda Roy ◽  
Himadri Shekhar Mondal ◽  
Md. Nurunnabi Mollah

This research consists of a suggestion and exploring the effect of a completing equilateral trilateral Censored separated roar resonator (CETCSRR) predictable antenna with microstrip patch has been investigated at 2.44 GHz on behalf of Wireless local area network (WLAN) practices as well as confirmation of validification by comparing simulation result of complete antenna and the corresponding circuit model. The CETCSRR structure potentially increases performance of proposed antenna and resonance frequency shifted to the lower frequency reason. The electromagnetic behaviour of CETCSRR is analysed for understanding the antenna mechanism. The parameters that considered in proposed structure are return loss, radiation characteristics, resonant frequency, polarization, directivity, bandwidth and gain in terms of size of CETCSRR, distance between two CETCSRR, number of CETCSRRs and orientation pattern of two CETCSRR. The focusing parameters achieved meaningful performances of return loss, directivity, radiation characteristics and gain that obtained from the single CETCSRR as well as dual CETCSRR patch antenna that may provide better coverage in WLAN application.


Sign in / Sign up

Export Citation Format

Share Document