scholarly journals CPWG Fed with Octagonal Patch Antenna

Author(s):  
Dr. K. RameshBabu

A Co planner Wave Guide (CPWG) fed with octagonal patch antenna is modified from their respective rectangular patch are presented for WLAN application. The dielectric material applied in the design process for both co planar and micro strip patch antenna is FR4 Epoxy Glass, which has relative permittivity of 4.4 and substrate height 1.6mm. Antenna parameters used to check the performance. A comparison is made between the octagonal co-planar antenna and octagonal micro strip antenna available. Ansys HFSS is used for antenna design and analysis. Both designed antennas are suitable for wireless local area network application and the design parameters of the antenna are optimized to resonate at 3GHz frequencies for WLAN applications. It has been found that octagonal micro strip patch antennas have lower return loss and are more directive than co planar patch antenna. High directivity of octagonal micro strip antenna is due to the presence of ground plane under the substrate of antenna. The results obtained by simulations have also shown that octagonal co planar patch antennas have high radiation efficiency (a measure of the power radiated through the antenna as an electromagnetic wave to the power fed to the antenna terminals) and which implies a wider bandwidth as compared to an octagonal micro strip patch antennas. The radiation efficiency obtained for micro strip patch antenna is 24% and that for co planar patch antenna is 67%, the directivity for micro strip patch antenna is 3.75 dB and that for a co-planar patch antenna is 3.25 dB.

In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


Author(s):  
Gaurav Varma ◽  
Rishabh Kumar Baudh

The aim is to design a Rhombus microstrip patch antenna. The antenna operates at FL=1.447 GHz to FH=2.382 GHz frequency for wireless local area network (WLAN). This antenna operates at f=1.914 GHz resonant frequency. In microstrip patch antenna, many types of shapes like circular, triangular, rectangular, square, ring shape, etc. are used, but in this design a rectangular shape is used. In proposed antenna, the accuracy and efficiency are increased. Integral equation three-dimensional (3D) software (IE3D) is used for the optimize of the rhombus cross-slotted antenna design. The IE3D uses a full wave method of moment simulator. This antenna fabricated on FR4 glass epoxy double-sided copper dielectric material with relative permittivity of ∈ =4.4, thickness h= 1.60mm, and loss tangent is 0.013.


2016 ◽  
Vol 4 (3) ◽  
pp. 80-84
Author(s):  
Meenal Kate ◽  
Anjana Goen

This paper present a comparative study between two works proposed for microstrip patch antenna dual band operations. The comparison is made between a dual-band planar antenna with a compact radiator for 2.4/5.2/5.8-GHz Wireless Local Area Network (WLAN) applications and a printed circular microstrip patch antenna with a four rectangular shape strip and co planar rectangular ground plane antenna. The comparative analysis between these two antennas consist of following parameters such as dimensions, bandwidth, gain, return loss, directivity etc.


Author(s):  
Taiwo Samuel Aina

Abstract: The performance of a microstrip patch antenna for a practical wireless local area network application is investigated in this research. This design is built around the transmission line concept. The antenna design substrate is FR4 (lossy) with a dielectric constant (Er) of 4.3 dielectric material, and the ground and patch materials are copper (annealed). The substrate is 71.62mm in width and 55.47mm in length. The height of the dielectric material is 1.6mm, which is the normal size for FR4 material. The conducting patch element has a width of 35.81mm and a length of 27.73mm for a resonance frequency of 2.573 GHz. A simulation with CST studio suite was used to optimise the antenna design. Keywords: Microstrio patch antenna, CST suite, WLAN application, Transmission line, Antenna design


The design and simulation of defected ground structure microstrip patch antenna for Worldwide Interoperability for Microwave Access (WiMAX) and Wireless Local Area Network (WLAN) applications are additionally testing as the antenna ought to be little in size, light in weight, easy to manufacture, minimal effort, and simplicity of joining in such gadgets. The target of this work is to plan and creation of an antenna which will be appropriate for WiMAX and WLAN applications with improved gain and optimized bandwidth. WiMAX depend on gauges, for example, IEEE 802.16, intended to work between 2-11 GHz and spreads S, C and X microwave recurrence groups. Metropolitan Area Network (MAN) conventions are in the 2.3 GHz, 2.5 GHz, 3.5 GHz and 5.8 GHz ranges. A planar antenna with imperfect ground plane is proposed and manufactured, 3.5/5.5 GHz WiMAX band, 5.2/5.8 GHz WLAN band, 4/6 GHz satellite correspondence, and different remote correspondence applications. This structure canvassed two groups in which it is extending from 3.34-8.72 GHz implies a band of 5.38 GHz with impedance BW 89.22%. The resonating frequencies are 3.92 GHz and 7.88 GHz with return loss - 35.59 dB and - 31.99 dB, VSWR 1.03 and 1.05 and gain 9.46 dB and 0.14 dB respectively. The second band covers 9.22-13.06 GHz implies a band of 3.84 GHz with impedance BW 34.47%. This resounds at 10.58 GHz with return loss - 55.52 dB, VSWR 1.00 and gain is 7.09 dB. The deliberate outcomes are in great concurrence with reproduced consequences of the proposed antenna.


The work in the paper demonstrates a rectangular microstrip patch antenna with a Z-shaped CSRR loading in the ground plane. A Z-shaped CSRR created in the ground plane, shown a 63.3% miniaturization in the radiating patch size compared to conventional rectangular patch antenna, resonating at 6.5GHz frequency in C-band. The simulation results find a significant increase in the fractional bandwidth (5.54%, with the centre frequency of 6.5GHz). Furthermore, the antenna has simulated gain of 2.83dB and return loss of -26.33dB at 6.5GHz. The electrical size of proposed antenna is 0.325λo × 0.260λo × 0.034λo (i.e., 15mm×12mm×1.6mm). The proposed antenna may find application in satellite communication systems in C-band and Wireless local area network (WLAN).


2017 ◽  
Vol 9 (10) ◽  
pp. 2029-2036 ◽  
Author(s):  
Esther F. Sundarsingh ◽  
Malathi Kanagasabai ◽  
Vimal Samsingh Ramalingam

This paper proposes a unique, first of its kind fabrication technique for the making of textile antennas. A novel method that provides scope for automation in textile antenna production is presented here. A completely integrated textile antenna fabrication method that eliminates the tasks of positioning and fastening of the various components of a patch antenna is discussed. The technique employs multilayer weaving for the production of a wearable antenna on a cotton substrate. Silver yarn is used for the conductive regions of the textile antenna. Two layers of woven cotton serve to isolate the radiating patch from the ground plane of the antenna. The designed antenna was chosen to operate at the frequency of 2.45 GHz for Wireless Local Area Network. The built prototype resonated at 2.43 GHz with a |S11|of −18.62 dB. The integrated textile antenna exhibited a gain of 1.06 dBi at 2.43 GHz.


Jurnal Teknik ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Heru Abrianto

Microstrip antenna which designed with dual feeding at 2.4 GHz and 5.8 GHz can meet WLAN (Wireless Local Area Network) application.Antenna fabrication use PCB FR4 double layer with thickness 1.6 mm and dielectric constant value 4.4. The length of patch antenna according to calculation 28.63 mm, but to get needed parameter length of patch should be optimized to 53 mm. After examination, this antenna has VSWR 1.212 at 2.42 GHz and 1.502 at 5.8 GHz, RL -13.94 dB at 2.42 GHz and -20.357 dB at 5.8 GHz, gain of antenna 6.16 dB at 2.42 GHz and 6.91 dB at 5.8 GHz, the radiation pattern is bidirectional. Keywords : microstrip antenna, wireless LAN, dual polarization, single feeding technique


Sign in / Sign up

Export Citation Format

Share Document