scholarly journals Modeling the stress-strain state of of a municipal solid waste landfill

Vestnik MGSU ◽  
2020 ◽  
pp. 776-788
Author(s):  
Vadim G. Ofrikhter ◽  
Galina M. Batrakova ◽  
Natalia N. Sliusar

Introduction. The process of municipal solid waste (further MSW) generation is inextricably linked with the life of humanity. Every day each person generates some, a small amount of garbage. As a result millions of tons of MSW are generated daily in the world which are unsuitable for further use and require disposal. There are various ways of handling MSW including their treatment, recycling and disposal. In Russian Federation the vast majority of MSW are currently located on the specially equipped facilities –– waste landfills. To date the most common waste management strategy remains their placement in a landfill. Waste landfills are arrays of stored waste and are special engineering structures designed for the safe isolation of their contents from the environment. Landfill includes gas exhaust and leachate drainage systems, liner and cover systems. The main component of this structure is waste itself. Mechanical stability of landfills should be provided at all stages of waste storage as well as after it complete filling to designed capacity and at post-closure stage. As the result of deformation of unstable waste, all landfill systems can be destroyed up to the collapse of garbage array leading to the significant environmental and other consequences. One of the most common problems leading to the various incidents at landfills is an incorrect assessment of their stability. MSW landfill is a complex multiphase system in which various interacting processes occur simultaneously. The main factor in the calculation and design of landfills is the forecast of their settlements. Studies by many authors have established that biological decomposition has a significant impact on the properties of MSW after which the waste is considered as the landfill soil with a particle size of up to 20 mm. Materials and methods. The paper presents the methodology and the results of numerical modeling of stress-strain state of the designed object “Waste Landfill”. The facility is an array of municipal solid waste of 38 meters high. Waste is stacked in the layers of 1.75 m thick. Each waste layer is covered by the loam cover of 0.25 m thick. Stress-strain state of municipal solid waste including biological creep was modelled using well-known “Soft-Soil-Creep model” (SSC-model). Results. The results of numerical simulation of stress-strain state of the waste pile at all stages of the filling and in the post-closure period are presented. An assessment of the increase in the capacity of the landfill due to the compaction and biological creep has been performed. Stability analysis of the landfill and potential failure mechanisms at different stages of filling and operation are presented. Conclusions. Numerical modeling of stress-strain state of the MSW array using the “Soft-Soil-Creep model” allows to analyze the stability of the waste pile at any stage of landfill filling and evaluate the increase in landfill capacity due to the waste settlement taking into account the mechanical creep and biocompression during layer-by-layer filling.

2021 ◽  
Vol 280 ◽  
pp. 01008
Author(s):  
Natalya Remez ◽  
Alina Dychko ◽  
Vadym Bronytskyi ◽  
Tetiana Hrebeniuk ◽  
Rafael Bambirra Pereira ◽  
...  

The paper provides numerical simulation of the influence of dynamic loading on the stress-strain state of the natural and geoengineering technogenic environment taking into account the soil basis for forecasting its use as the basis of the structure. Paper demonstrates the impact of static and dynamic loading on the subsidence of the landfill. To take into account the liquid phase of the waste and the viscoplastic medium, Darcy's law is used as an equation of balance of forces. The body of the landfill is modeled by weak soil taking into account the creep, using the Soft Soil Creep model. The covering and underlying soil layers are described by the Coulomb – Mohr model. An effective method for calculating the sedimentation of natural and geoengineering environment on the example of a solid waste landfill, based on numerical modeling of the stress-strain state of the landfill and underlying soil using finite elements is developed. It is demonstrated that the largest subsidence is experienced by the landfill with sand, as the base soil, but in percentage terms the amount of subsidence with the maximum load relative to the initial subsidence without loading is the largest in clay (33.7%). The obtained results must be taken into account when using landfills as a basis for buildings, structures, routes, recreational areas, etc.


2015 ◽  
Vol 799-800 ◽  
pp. 865-869 ◽  
Author(s):  
Vladimir Yakovlevich Modorskiy ◽  
Arthur Fadanisovich Shmakov

In this work results of numerical modeling of the gasdynamic processes and processes of deformation proceeding in the compressor of the model test bench of the gas-distributing unit are provided. Fields of pressure and temperatures, and also component of the stress-strain state structure taking into account the imported gasdynamic and heat loads are received. A good agreement with data of physical experiments is received.


2020 ◽  
pp. 28-36
Author(s):  
Volodymyr Sedin ◽  
Vladyslav Kovba ◽  
Yurii Volnianskyi ◽  
Kateryna Bikus

A full-scale experiment was conducted to study the operation of a multi-helix screw pile under static pressing and pulling load in dusty clay soil. Based on the full-scale test of a multi-helix screw pile under static loading in dusty clay soil, numerical modeling of the stress-strain state of the base of the multi-helix screw pile was performed. Multi-helix screw piles are actively used all over the world, and have also become widespread in Ukraine. Foundations made of multi-helix screw piles are often used for industrial construction as well as the foundations of low-rise buildings and structures. Despite the growing demand for the use of multi-helix screw piles in modern construction, there is no official document calculating the features of their design and bearing capacity of a multi-helix screw pile. This poses a number of new tasks for engineers and geotechnical: a) development of new modern calculation methods; b) development and use of modern normative documents and recommendations for the calculation of foundations from multi-helix screw piles in various soil conditions; с) use of computer-aided design systems for calculation of complex geotechnical tasks; d) development of calculation models that will take into account nonlinear models of deformation of materials and soil base. Foundations made of multi-helix screw piles are a promising direction in the field of foundation construction due to the reduction of the duration of the foundation and its economic. This requires the development of regulations with recommendations for the calculation and use of multi-helix screw piles in the field of foundation construction, development of modern calculation models for the calculation of bearing capacity and settling of multi-helix screw piles in different geological conditions. Based on the results of the field study of the work of multi-helix screw piles in clay soils, numerical modeling of the stress-strain state of the base of the multi-turn pile was performed, and their results were compared.


Geotectonics ◽  
2018 ◽  
Vol 52 (5) ◽  
pp. 578-588 ◽  
Author(s):  
V. N. Morozov ◽  
V. I. Kaftan ◽  
V. N. Tatarinov ◽  
I. Yu. Kolesnikov ◽  
A. I. Manevich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document