scholarly journals Fire safety of hydrogen filling stations

2020 ◽  
Vol 29 (4) ◽  
pp. 42-50
Author(s):  
Yu. N. Shebeko

Introduction. The problem of greenhouse gas emissions from hydrocarbon-powered vehicles, polluting the air, makes consumption of hydrogen as an alternative motor fuel particularly relevant. Solutions to this problem are provided in a number of works written by foreign researchers. This article contains the analysis of these works in respect of fi re and explosion safety assurance at gaseous and liquid hydrogen filling stations (hydrogen fi lling stations).Features of hydrogen storage. Motor fuel storage is a main problem of hydrogen filling stations and their operation. Most advanced hydrogen storage methods (applicable to gaseous, liquid and adsorbed hydrogen, as well as metal hydrides that contain hydrogen) are analyzed in the work.Compressed hydrogen filling stations. Fire and explosion safety features of filling stations, where compressed hydrogen is stored, are considered by the author. As a rule, mobile fuel trucks, equipped with compressed gas tanks, are used there.Liquid hydrogen filling stations. Fire safety aspects of filling stations, where liquid hydrogen is stored, regasifi cation is performed, and vehicles are fi lled with compressed gas, are also analyzed.Hydrogen formation at filling stations. One of the ways to supply fuel to a hydrogen filling station is to produce it on site using dehydrogenation of methylcyclohexane, which is delivered in tank trucks. Hydrogen is compressed and stored in cylinders. Fire hazards arising at such stations are analyzed.Main provisions of NFPA 2 in terms of hydrogen filling stations. The requirements of the international standard NFPA 2 Hydrogen Technologies Code. 2016 Edition, that apply to compressed and liquefi ed hydrogen filling stations, are considered.Conclusions. The author has made a conclusion that hydrogen fi lling stations are intensively built in several countries. It has been proven that if necessary protective measures are taken, hydrogen fi lling stations can be as safe as those using hydrocarbon fuel. It is necessary to develop a domestic regulatory document containing fi re safety requirements applicable to hydrogen fi lling stations with account taken of the international experience.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5917
Author(s):  
Muhammad Aziz

Decarbonization plays an important role in future energy systems for reducing greenhouse gas emissions and establishing a zero-carbon society. Hydrogen is believed to be a promising secondary energy source (energy carrier) that can be converted, stored, and utilized efficiently, leading to a broad range of possibilities for future applications. Moreover, hydrogen and electricity are mutually converted, creating high energy security and broad economic opportunities toward high energy resilience. Hydrogen can be stored in various forms, including compressed gas, liquid hydrogen, hydrides, adsorbed hydrogen, and reformed fuels. Among these, liquid hydrogen has advantages, including high gravimetric and volumetric hydrogen densities and hydrogen purity. However, liquid hydrogen is garnering increasing attention owing to the demand for long storage periods, long transportation distances, and economic performance. This paper reviews the characteristics of liquid hydrogen, liquefaction technology, storage and transportation methods, and safety standards to handle liquid hydrogen. The main challenges in utilizing liquid hydrogen are its extremely low temperature and ortho- to para-hydrogen conversion. These two characteristics have led to the urgent development of hydrogen liquefaction, storage, and transportation. In addition, safety standards for handling liquid hydrogen must be updated regularly, especially to facilitate massive and large-scale hydrogen liquefaction, storage, and transportation.


MRS Bulletin ◽  
1999 ◽  
Vol 24 (11) ◽  
pp. 40-44 ◽  
Author(s):  
R.B. Schwarz

Magnesium can reversibly store about 7.7 wt% hydrogen, equivalent to more than twice the density of liquid hydrogen. This high storage capacity, coupled with a low price, suggests that magnesium and magnesium alloys could be advantageous for use in battery electrodes and gaseous-hydrogen storage systems. The use of a hydrogen-storage medium based on magnesium, combined with a fuel cell to convert the hydrogen into electrical energy, is an attractive proposition for a clean transportation system. However, the advent of such a system will require further research into magnesium-based alloys that form less stable hydrides and proton-conducting membranes that can raise the operating temperature of the current fuel cells.Following the U.S. oil crisis of 1974, research into alternative energy-storage and distribution systems was vigorously pursued. The controlled oxidation of hydrogen to form water was proposed as a clean energy system, creating a need for light and safe hydrogen-storage media. Extensive research was done on inter-metallic alloys, which can store hydrogen at densities of about 1500 cm3-H2 gas/ cm3-hydride, higher than the storage density achieved in liquid hydrogen (784 cm3/cm3 at –273°C) or in pressure tanks (˜200 cm3/cm3 at 200 atm). The interest in metal hydrides accelerated following the development of portable electronic devices (video cameras, cellular phones, laptop computers, tools, etc.), which created a consumer market for compact, rechargeable batteries. Initially, nickel-cadmium batteries fulfilled this need, but their relatively low energy density and the toxicity of cadmium helped to drive the development of higher-energy-density, less toxic, rechargeable batteries.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2235 ◽  
Author(s):  
Jimmy Romanos ◽  
Sara Abou Dargham ◽  
Roy Roukos ◽  
Peter Pfeifer

An overview is given of the development of sorbent materials for hydrogen storage. Understanding the surface properties of the adsorbed film is crucial to optimize hydrogen storage capacities. In this work, the lattice gas model (Ono-Kondo) is used to determine the properties of the adsorbed hydrogen film from a single supercritical hydrogen isotherm at 77 K. In addition, this method does not require a conversion between gravimetric excess adsorption and absolute adsorption. The overall average binding energy of hydrogen is 4.4 kJ/mol and the binding energy at low coverage is 9.2 kJ/mol. The hydrogen film density at saturation is 0.10 g/mL corresponding to a local pressure of 1500 bar in the adsorbed phase.


2020 ◽  
pp. 26-35
Author(s):  
Денис Валерьевич Зобков ◽  
Александр Алексеевич Порошин ◽  
Андрей Александрович Кондашов ◽  
Евгений Васильевич Бобринев ◽  
Елена Юрьевна Удавцова

Проанализирован международный опыт реформирования проверок соблюдения требований пожарной безопасности и внедрения риск-ориентированного подхода. Разработана модель отнесения объектов защиты к категориям риска в зависимости от вероятного причинения вреда, который рассчитывается исходя из количества погибших и травмированных при пожарах людей. Сформулированы критерии отнесения объектов защиты к категориям риска. Выполнен расчет категорий риска для групп объектов, однородных по группам экономической деятельности и классам функциональной пожарной опасности. Проведено сравнение с существующей классификацией объектов защиты по категориям риска. The international experience of reforming of fire safety compliance checks and implementing a risk-based approach is considered. There are presented methodological approaches to calculating the risk of causing harm (damage) in buildings (structures) as a result of fire for the purpose of assignment of buildings and structures according to risk categories as well as justification of the frequency of scheduled inspections at these facilities. There is calculated the probability of fire occurrence for a group of objects of protection that are homogeneous by type of economic activity and functional fire hazard classes in order to assign objects of protection to certain risk categories. The social damage expressed in the death and injury of people as a result of fire is also calculated in order to assign objects of protection to certain risk categories. Classification of objects of protection according to the risk categories is performed using the indicator of the severity of potential negative consequences of fires. This indicator characterizes the degree of excess of the expected risk of negative consequences of fires for the corresponding group of objects of protection in relation to the value of the permissible risk of negative consequences of fire. The permissible risk of negative consequences of fires is calculated on the basis of statistical data, taking into account the value of the individual fire risk of exposure of critical values of fire hazards on person in buildings and structures. The criteria for assigning groups of objects of protection to the appropriate risk categories are formulated on the basis of formation of distribution of numerical values of the severity of potential negative consequences of fires. There are carried out the assessment of the severity of potential negative consequences of fires for objects of protection that are homogeneous by type of economic activity and functional fire hazard classes, and also the risk categories of the corresponding groups of objects are determined. The proposed classification of objects of protection according to risk categories is compared with the existing classification. The obtained results of calculations showed that scheduled inspections of objects of protection by the Federal state supervision bodies, depending on the assigned risk category and with corresponding frequency, have significant role in improving the level of fire safety of objects. The decrease in the intensity of scheduled inspections, at the same time, may lead to a corresponding decrease in the level of fire protection of objects.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1450
Author(s):  
Wojciech Węgrzyński ◽  
Grzegorz Krajewski ◽  
Piotr Tofiło ◽  
Wolfram Jahn ◽  
Aleksander Król ◽  
...  

Sprinkler activation is one of the key events defining the course of a compartment fire. The time when activation occurs is commonly used in the determination of the design fire scenario, which is the cornerstone of the design of building fire safety features. A well-known model of sprinkler activation (response time index (RTI) model) was introduced into the numerical scheme of the ANSYS Fluent computational fluid dynamics (CFD) package. The novel way in which the model is used is the calculation of the time for sprinkler activation within each discrete cell of the domain. The proposed novel approach was used in a case-study to assess the effects of comfort mode natural ventilation on a sprinkler’s activation pattern. It was found that hinged vents in the comfort mode had a significant effect on sprinkler activation, both in terms of delaying it as well as limiting the total number of cells in which the sprinkler would have activated. In some scenarios with a hinged vent, no activation was observed in the central point of the vent, possibly indicating problems with the autonomous triggering of the fire mode of such a device. It was also found that the RTI and C (related to the conductive transport of sprinkler fitting) parameter values had a moderate influence on sprinkler activation time—only for high-temperature sprinklers (≥ 141 °C). This study shows the applicability of the 3D activation time mapping for research focused on the fire safety of sprinkler-protected compartments and for the performance-based approach to sprinkler system design. Even though the RTI model is the industry standard for the determination of sprinkler response, the model implementation in ANSYS Fluent was not validated. This means that sources of uncertainty, mainly connected with the determination of flow velocity and temperature are not known, and the model should be used with caution. An in-depth validation is planned for subsequent studies.


Sign in / Sign up

Export Citation Format

Share Document