scholarly journals Assessing the Accuracy of Approximate Confidence Intervals Proposed for the Mean of Poisson Distribution

2020 ◽  
Vol 18 (1) ◽  
pp. 2-13
Author(s):  
Alireza Shirvani ◽  
Malek Fathizadeh

The Poisson distribution is applied as an appropriate standard model to analyze count data. Because this distribution is known as a discrete distribution, representation of accurate confidence intervals for its distribution mean is extremely difficult. Approximate confidence intervals were presented for the Poisson distribution mean. The purpose of this study is to simultaneously compare several confidence intervals presented, according to the average coverage probability and accurate confidence coefficient and the average confidence interval length criteria.

2021 ◽  
Vol 23 ◽  
Author(s):  
Peyton Cook

This article is intended to help students understand the concept of a coverage probability involving confidence intervals. Mathematica is used as a language for describing an algorithm to compute the coverage probability for a simple confidence interval based on the binomial distribution. Then, higher-level functions are used to compute probabilities of expressions in order to obtain coverage probabilities. Several examples are presented: two confidence intervals for a population proportion based on the binomial distribution, an asymptotic confidence interval for the mean of the Poisson distribution, and an asymptotic confidence interval for a population proportion based on the negative binomial distribution.


2021 ◽  
Vol 12 (1) ◽  
pp. 275-286
Author(s):  
Ayesha Ammar ◽  
Kahkashan Bashir Mir ◽  
Sadaf Batool ◽  
Noreen Marwat ◽  
Maryam Saeed ◽  
...  

Objective: Study was aimed to see the effects of hypothyroidism on GFR as a renal function. Material and methods: Total of Fifty-eight patients were included in the study. Out of those forty-eight patients were female and the rest were male. Out of fifty eight patients, fifty three patients were of thyroid cancer in which hypothyroidism was due to discontinuation of thyroxine before the administration of radioactive iodine for Differentiated thyroid cancer.Moreover, remaining five patients were post radioactive iodine treatment (for hyperthyroidism) hypothyroid. All of the patients were above eighteen years of age with TSH value > 30µIU/ml. Pregnant and lactating females were excluded.Renal function tests (urea/creatinine, creatinine clearance) and serum electrolytes followed by Tc-99m-DTPA renal scan for GFR assessment (GATES’ method) were carried out in all subjects twice during the study, One study during hypothyroid state (TSH > 30 µIU/ml) and other during euthyroid state (TSH between 0.4 to 4µ IU/ml). The results of Student’s t-test showed significant difference in renal functions (Urea, creatinine, creatinine clearance, GFR values) in euthyroid state and hypothyroid state (p-value <0.05). RESULTS: In case of creatinine the paired t test reveal the mean 1.014±0.428, with standard error of 0.669 within 95% confidence interval, for creatinine clearance 80.11±14.12 with standard error of 1.94 within 95% confidence intervals, for urea the mean 28±12.13 with standard error of 1.607 within 95% confidence intervals and for GFR for individual kidney is 38.056±8.56 with standard error of 1.3717 within 95% confidence interval. There was no difference in the outcome of the 2 groups. Conclusion: Hypothyroidism impairs renal function to a significant level and hence needs to be prevented and corrected as early as possible.


2002 ◽  
Vol 21 (10) ◽  
pp. 1443-1459 ◽  
Author(s):  
Douglas J. Taylor ◽  
Lawrence L. Kupper ◽  
Keith E. Muller

1981 ◽  
Vol 8 (2) ◽  
pp. 269 ◽  
Author(s):  
JT Wood ◽  
SM Carpenter ◽  
WE Poole

Fitted growth curves for several individual animals for a measurement such as head length will often differ significantly from each other, even though the curves all have the same general form. For construction of a confidence interval for the age of an animal of unknown age with a particular head length, account should be taken of between-animal variation as well as within-animal variation. This paper gives methods for estimating the components of the variation from observations on animals of known age, and for combining them to give approximate confidence intervals for the age of animals of unknown age. The methods are illustrated using data from grey kangaroos.


2018 ◽  
Vol 7 (2) ◽  
pp. 33
Author(s):  
Traoré Boubakar ◽  
Diabaté Lassina ◽  
Touré Belco ◽  
Fané Abdou

An interesting topic in mathematical statistics is that of the construction of the confidence intervals. Two kinds of intervals which are both based on the method of pivotal quantity are the shortest confidence interval and the equal tail confidence intervals. The aim of this paper is to clarify and comment on the finding of such intervals and to investigation the relation between the two kinds of intervals. In particular, we will give a construction technique of the shortest confidence intervals for the mean of the standard normal distribution. Examples illustrating the use of this technique are given.


2009 ◽  
Vol 33 (2) ◽  
pp. 87-90 ◽  
Author(s):  
Douglas Curran-Everett

Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This third installment of Explorations in Statistics investigates confidence intervals. A confidence interval is a range that we expect, with some level of confidence, to include the true value of a population parameter such as the mean. A confidence interval provides the same statistical information as the P value from a hypothesis test, but it circumvents the drawbacks of that hypothesis test. Even more important, a confidence interval focuses our attention on the scientific importance of some experimental result.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Sandra Vucane ◽  
Janis Valeinis ◽  
George Luta

For independent observations, recently, it has been proposed to construct the confidence intervals for the mean using exponential type inequalities. Although this method requires much weaker assumptions than those required by the classical methods, the resulting intervals are usually too large. Still in special cases, one can find some advantage of using bounded and unbounded Bernstein inequalities. In this paper, we discuss the applicability of this approach for dependent data. Moreover, we propose to use the empirical likelihood method both in the case of independent and dependent observations for inference regarding the mean. The advantage of empirical likelihood is its Bartlett correctability and a rather simple extension to the dependent case. Finally, we provide some simulation results comparing these methods with respect to their empirical coverage accuracy and average interval length. At the end, we apply the above described methods for the serial analysis of a gene expression (SAGE) data example.


2020 ◽  
Author(s):  
Matthias Flor ◽  
Michael Weiβ ◽  
Thomas Selhorst ◽  
Christine Müller-Graf ◽  
Matthias Greiner

Abstract Background: Various methods exist for statistical inference about a prevalence that consider misclassifications due to an imperfect diagnostic test. However, traditional methods are known to suffer from truncation of the prevalence estimate and the confidence intervals constructed around the point estimate, as well as from under-performance of the confidence intervals' coverage. Methods: In this study, we used simulated data sets to validate a Bayesian prevalence estimation method and compare its performance to frequentist methods, i.e. the Rogan-Gladen estimate for prevalence, RGE, in combination with several methods of confidence interval construction. Our performance measures are (i) error distribution of the point estimate against the simulated true prevalence and (ii) coverage and length of the confidence interval, or credible interval in the case of the Bayesian method. Results: Across all data sets, the Bayesian point estimate and the RGE produced similar error distributions with slight advanteges of the former over the latter. In addition, the Bayesian estimate did not suffer from the RGE's truncation problem at zero or unity. With respect to coverage performance of the confidence and credible intervals, all of the traditional frequentist methods exhibited strong under-coverage, whereas the Bayesian credible interval as well as a newly developed frequentist method by Lang and Reiczigel performed as desired, with the Bayesian method having a very slight advantage in terms of interval length. Conclusion: The Bayesian prevalence estimation method should be prefered over traditional frequentist methods. An acceptable alternative is to combine the Rogan-Gladen point estimate with the Lang-Reiczigel confidence interval.


Sign in / Sign up

Export Citation Format

Share Document