scholarly journals Representation Requirements of As-Is Building Information Models Generated from Laser Scanned Point Cloud Data

Author(s):  
Engin Burak Anil ◽  
Burcu Akinci ◽  
Daniel Huber
Author(s):  
L. Chow ◽  
S. Fai

The digitization and abstraction of existing buildings into building information models requires the translation of heterogeneous datasets that may include CAD, technical reports, historic texts, archival drawings, terrestrial laser scanning, and photogrammetry into model elements. In this paper, we discuss a project undertaken by the Carleton Immersive Media Studio (CIMS) that explored the synthesis of heterogeneous datasets for the development of a building information model (BIM) for one of Canada’s most significant heritage assets – the Centre Block of the Parliament Hill National Historic Site. The scope of the project included the development of an as-found model of the century-old, six-story building in anticipation of specific model uses for an extensive rehabilitation program. The as-found Centre Block model was developed in Revit using primarily point cloud data from terrestrial laser scanning. The data was captured by CIMS in partnership with Heritage Conservation Services (HCS), Public Services and Procurement Canada (PSPC), using a Leica C10 and P40 (exterior and large interior spaces) and a Faro Focus (small to mid-sized interior spaces). Secondary sources such as archival drawings, photographs, and technical reports were referenced in cases where point cloud data was not available. As a result of working with heterogeneous data sets, a verification system was introduced in order to communicate to model users/viewers the source of information for each building element within the model.


2020 ◽  
Vol 12 (11) ◽  
pp. 1800 ◽  
Author(s):  
Maarten Bassier ◽  
Maarten Vergauwen

The processing of remote sensing measurements to Building Information Modeling (BIM) is a popular subject in current literature. An important step in the process is the enrichment of the geometry with the topology of the wall observations to create a logical model. However, this remains an unsolved task as methods struggle to deal with the noise, incompleteness and the complexity of point cloud data of building scenes. Current methods impose severe abstractions such as Manhattan-world assumptions and single-story procedures to overcome these obstacles, but as a result, a general data processing approach is still missing. In this paper, we propose a method that solves these shortcomings and creates a logical BIM model in an unsupervised manner. More specifically, we propose a connection evaluation framework that takes as input a set of preprocessed point clouds of a building’s wall observations and compute the best fit topology between them. We transcend the current state of the art by processing point clouds of both straight, curved and polyline-based walls. Also, we consider multiple connection types in a novel reasoning framework that decides which operations are best fit to reconstruct the topology of the walls. The geometry and topology produced by our method is directly usable by BIM processes as it is structured conform the IFC data structure. The experimental results conducted on the Stanford 2D-3D-Semantics dataset (2D-3D-S) show that the proposed method is a promising framework to reconstruct complex multi-story wall elements in an unsupervised manner.


2020 ◽  
Vol 12 (7) ◽  
pp. 1094 ◽  
Author(s):  
Mesrop Andriasyan ◽  
Juan Moyano ◽  
Juan Enrique Nieto-Julián ◽  
Daniel Antón

Building Information Modelling (BIM) is a globally adapted methodology by government organisations and builders who conceive the integration of the organisation, planning, development and the digital construction model into a single project. In the case of a heritage building, the Historic Building Information Modelling (HBIM) approach is able to cover the comprehensive restoration of the building. In contrast to BIM applied to new buildings, HBIM can address different models which represent either periods of historical interpretation, restoration phases or records of heritage assets over time. Great efforts are currently being made to automatically reconstitute the geometry of cultural heritage elements from data acquisition techniques such as Terrestrial Laser Scanning (TLS) or Structure From Motion (SfM) into BIM (Scan-to-BIM). Hence, this work advances on the parametric modelling from remote sensing point cloud data, which is carried out under the Rhino+Grasshopper-ArchiCAD combination. This workflow enables the automatic conversion of TLS and SFM point cloud data into textured 3D meshes and thus BIM objects to be included in the HBIM project. The accuracy assessment of this workflow yields a standard deviation value of 68.28 pixels, which is lower than other author’s precision but suffices for the automatic HBIM of the case study in this research.


Author(s):  
M. Bassier ◽  
R. Klein ◽  
B. Van Genechten ◽  
M. Vergauwen

The automated reconstruction of Building Information Modeling (BIM) objects from point cloud data is still ongoing research. A key aspect is the creation of accurate wall geometry as it forms the basis for further reconstruction of objects in a BIM. After segmenting and classifying the initial point cloud, the labelled segments are processed and the wall topology is reconstructed. However, the preocedure is challenging due to noise, occlusions and the complexity of the input data.<br>In this work, a method is presented to automatically reconstruct consistent wall geometry from point clouds. More specifically, the use of room information is proposed to aid the wall topology creation. First, a set of partial walls is constructed based on classified planar primitives. Next, the rooms are identified using the retrieved wall information along with the floors and ceilings. The wall topology is computed by the intersection of the partial walls conditioned on the room information. The final wall geometry is defined by creating IfcWallStandardCase objects conform the IFC4 standard. The result is a set of walls according to the as-built conditions of a building. The experiments prove that the used method is a reliable framework for wall reconstruction from unstructured point cloud data. Also, the implementation of room information reduces the rate of false positives for the wall topology. Given the walls, ceilings and floors, 94% of the rooms is correctly identified. A key advantage of the proposed method is that it deals with complex rooms and is not bound to single storeys.


Author(s):  
M. Bassier ◽  
L. Mattheuwsen ◽  
M. Vergauwen

Abstract. The reconstruction of Building Information Modeling objects for as-built modeling is currently the subject of ongoing research. A popular method is to extract structure information from point cloud data to create a set of parametric objects. This requires the interpretation of the point cloud data which currently is a manual and labor intensive procedure. Automated processes have to cope with excessive occlusions and clutter in the data sets. To create an as-built BIM, it is vital to reconstruct the building’s structure i.e. wall geometry prior to the reconstruction of other objects.In this work, a novel method is presented to automatically reconstruct as-built BIM for generic buildings. We presented an unsupervised method that procedurally models the geometry of the walls based on point cloud data. A bottom-up process is defined where consecutively higher level information is extracted from the point cloud data using pre-trained machine learning models. Prior to the reconstruction, the data is segmented, classified and clustered to retrieve all the available observations of the walls. The resulting geometry is processed by the reconstruction algorithm. First, the necessary information is extracted from the observations for the creation of parametric solid objects. Subsequently, the final walls are created by updating their topology. The method is tested on a variety of scenes and shows promising results to reliably and accurately create as-built models. The accuracy of the generated geometry is similar to the precision of expert modelers. A key advantage is that that the algorithm creates Revit and Rhino native objects which makes the geometry directly applicable to a wide range of applications.


Author(s):  
H. Macher ◽  
L. Chow ◽  
S. Fai

<p><strong>Abstract.</strong> The use of remote sensors to acquire metric information for building information modelling (BIM) of heritage buildings is now common. Problematically, the creation of models from that information is still largely a manual and non-quantifiable process. As a result, a key aspect of the scan-to-BIM process is verification of the accuracy of the model in relation to the metric information. The most common method to check a model element constructed from a point cloud seems to be the analysis of deviations between this element and the corresponding point cloud (Anil et al., 2013; Tang et al., 2011). It is comprised of three main steps: the computation, the visualisation and the analysis of deviations. The verification process is particularly onerous for large-scale buildings where it is necessary to ensure that all elements of a model are consistent with metric data that may come from diverse sources (Chow and Fai, 2017). In this paper, we discuss the development of a plug-in for Autodesk Revit that automates this verification process.</p>


2020 ◽  
Vol 12 (19) ◽  
pp. 8108
Author(s):  
Namhyuk Ham ◽  
Baek-Il Bae ◽  
Ok-Kyung Yuh

This study proposed a phased reverse engineering framework to construct cultural heritage archives using laser scanning and a building information model (BIM). This framework includes acquisition of point cloud data through laser scanning. Unlike previous studies, in this study, a standard for authoring BIM data was established through comparative analysis of existing archives and point cloud data, and a method of building valuable BIM data as an information model was proposed. From a short-term perspective, additional archives such as member lists and drawings can be extracted from BIM data built as an information model. In addition, from a long-term perspective, a scenario for using the cultural heritage archive consisting of historical records, point cloud data, and BIM data was presented. These scenarios were verified through a case study. In particular, through the BIM data building and management method, relatively very light BIM data (499 MB) could be built based on point cloud data (more than 917 MB), which is a large amount of data.


Sign in / Sign up

Export Citation Format

Share Document