scholarly journals BER Analysis of Translation Invariant Wavelet Based Orthogonal Frequency Division Multiplexing System for 5G Wireless Communication Networks

2018 ◽  
Vol 11 (6) ◽  
pp. 292-299
Author(s):  
Sumalatha Sunkara ◽  
◽  
Gollamandala Bhargava ◽  
2021 ◽  
Author(s):  
Mohammed Alresheedi ◽  
YAHYA AL-MOLIKI ◽  
Yahya Al-Harthi ◽  
Ali Alqahtani

Abstract This paper introduces an optical orthogonal frequency division multiplexing (OFDM)-based hyperchaotic key generation encryption approach that can improve confidentiality in visible light communication (VLC) networks. Using a hyperchaotic four-dimensional method, the bipolar real-valued OFDM signal can be used for constructing dynamic cypher keys modified at every frame over the communication time, resulting in a superior degree of protection against statistical and correlation attacks. In accordance with our findings, this approach decreases the ratio of peak-to-average power of the transmitted signal, and enhances the bit error rate efficiency and secrecy capacity of the OFDM-based VLC network, which improves confidentiality.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Bircan Çalişir ◽  
Ayhan Akbal

Filter bank multicarrier (FBMC) is one of the effective candidates for the fifth generation of wireless communication networks. 5G (5th-generation wireless systems) is accepted as the next major stage of mobile telecommunication technology. The extent of 5G will be expanded mobile broadband services to next-generation automobiles and connected machines. In particular, filter bank multicarrier with offset quadrature amplitude modulation (FBMC/OQAM) is determined as the future generation 5G air interface by researchers recently. Filter bank multicarrier (FBMC) is admitted as one of the alternative technologies for multicarrier modulation. Compared to orthogonal frequency-division multiplexing (OFDM), FBMC has better spectrum shape and supports mobility. Therefore, efficient hardware implementations have highly interested researchers. Cyclic prefix (CP) and guard band are used for orthogonal frequency-division multiplexing (OFDM) and this causes loss of spectral efficiency, but FBMC applications do not need CP and guard band. Due to the fact that FBMC has offset QAM (OQAM) and band-limited filtering features on each subcarrier, the need for CP and guard band is eliminated. In this paper, novel pipelined hardware architecture of the filter design of FBMC/OQAM modulator has been proposed.


2019 ◽  
Vol 8 (3) ◽  
pp. 2003-2008

Orthogonal Frequency Division Multiplexing (OFDM) is one of the multicarrier transmission techniques used in wireless communication system. It has many benefits such as robust in channel fading and has high spectral density. The main objective of OFDM implementation in wireless communication system is to achieve less or zero Bit Error Rate (BER). However, OFDM design complexity, requirement and selection of the suitable modulation method are among the current issues. Thus, this paper aims to investigate the performance of OFDM in wireless communication by developing two OFDM based system designs. The transmitter, channel and receiver are designed based on OFDM system principles. Forward Error Correction (FEC) method is applied to reduce the BER. Both OFDM designs produce less BER with zero BER for the second OFDM design. The investigation study shows that the performance of OFDM can be enhanced by applying Fast Fourier Transform (FFT) technique. Zero BER can be achieved if the suitable modulation scheme is applied in the system. The developed designs are not complex, suitable to be applied for IEEE 802.11 standard. The BER performance can be influenced by the types of channels, signal to noise ratio (SNR) and various modulation schemes. Thus, this study can be used as a guidance to implement the OFDM in the current or future wireless communication system.


Telecom IT ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 55-66
Author(s):  
I. Grishin ◽  
A. Kalinkina

This article provides an overview of the technologies for generating radio signals, such as orthogonal frequency division multiplexing and its modifications: universal filtered multicarrier and filter bank multi-carrier currently used in wireless communication networks. Subject of research: methods of multicar-rier modulation. Main results: Overview of modern methods of forming multicarrier signals in radio communication systems. A number of computational experiments have been performed to compare the characteristics of signal localization, peak-to-average ratios and spurious emissions. Practical implica-tions: the results can be used in choosing the type of modulation in the case of the development of digi-tal radio communication systems.


2013 ◽  
Vol 765-767 ◽  
pp. 436-439
Author(s):  
Ya Ru Fu ◽  
Qi Zhu

Different data rate services are expected to support for heterogeneous users in OFDM based relaying networks. And fairness of users is an important factor that cannot be neglected in the process of resource allocation, particularly for users at the cell edge. The traditional proportional fairness (PF) scheduling algorithm provides a trade-off between average throughout and fairness in wireless communication networks. This paper investigates subcarrier allocation problem of Orthogonal Frequency Division Multiplexing (OFDM) aided relaying systems with PF constraint and proposes an efficient PF scheduling priority by using the users channel condition of past scheduling time and current scheduling time more comprehensively and uniformly which can both maximize the system transmission rate and enhance the system fairness no less than traditional ones. The simulation results show the validity.


Sign in / Sign up

Export Citation Format

Share Document