scholarly journals FORMULATION AND CHARACTERIZATION OF SELF EMULSIFYING DRUG DELIVERY SYSTEM OF SPIRONOLACTONE

1970 ◽  
Vol 7 (1) ◽  
pp. 38-40
Author(s):  
Ankur Gupta ◽  
Arpna Indurkhya ◽  
S.C Chaturvedi ◽  
Ajit Varma

Spironolactone is aldosterone antagonist drug belonging to the category of potassium sparing diuretics administered orally that has absolute bioavailability of only 68% due to the poor aqueous solubility. The main aim of the present work was to develop a self emulsifying drug delivery system (SEDDS) to enhance the oral absorption of spironolactone. The solubility of spironolactone in various oils, surfactants, and co surfactants was determined. Pseudo ternary phase diagrams were constructed using castor oil, Tween 80, and polyethylene glycol 400, and distilled water to identify the efficient self-micro emulsion region. Prepared self emulsifying drug delivery system was further evaluated for its emulsification time, drug content, optical clarity, droplet size, zeta potential, in vitro drug release. The results showed that 96.16% drug was released from the SEDDS formulation in 3 hrs. This demonstrated an enhancement in the drug release and thereby, absorption of the drug through the membrane, this was significantly higher than that of the plain drug suspension. Thus, the above findings support that the utility of SEDDS to enhance solubility and dissolution of poorly water soluble compounds which may result in improved Therapeutic performance.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Shailesh T. Prajapati ◽  
Harsh A. Joshi ◽  
Chhaganbhai N. Patel

Olmesartan medoxomil (OLM) is an angiotensin II receptor blocker (ARB) antihypertensive agent administered orally that has absolute bioavailability of only 26% due to the poor aqueous solubility (7.75 μg/ml). The aim of the present investigation was to develop a self-microemulsifying drug delivery system (SMEDDS) to enhance the oral absorption of OLM. The solubility of OLM in various oils, surfactants, and cosurfactants was determined. Pseudoternary phase diagrams were constructed using Acrysol EL 135, Tween 80, Transcutol P, and distilled water to identify the efficient self-microemulsification region. Prepared SMEDDS was further evaluated for its emulsification time, drug content, optical clarity, droplet size, zeta potential, in vitro dissolution, and in vitro and ex vivo drug diffusion study. The optimized formulation S2 contained OLM (20 mg), Tween 80 (33%v/v), Transcutol P (33%v/v), and Acrysol EL 135 (34%v/v) had shown the smallest particle size, maximum solubility, less emulsification time, good optical clarity, and in vitro release. The in vitro and ex vivo diffusion rate of the drug from the SMEDDS was significantly higher than that of the plain drug suspension. It was concluded that SMEDDS would be a promising drug delivery system for poorly water-soluble drugs by the oral route.


Author(s):  
Kanuri Lakshmi Prasad ◽  
Kuralla Hari

Objective: To enhance solubility and dissolution rate of budesonide through development of solid self-nanoemulsifying drug delivery system (S-SNEDDS). Methods: Liquid self-nanoemulsifying drug delivery systems (L-SNEDDS) were prepared and ternary phase diagram was constructed using Origin pro 8. Liquid self-nanoemulsifying formulation LF2 having 20% oil and 80% of surfactant/co-surfactant was optimized from the three formulations (LF1-LF3) to convert in to solid, through various characterization techniques like self-emulsification, in vitro drug release profile and drug content estimation. The prepared L-SNEDDS converted into S-SNEDDS, SF1-SF6 by adsorption technique using Aerosil 200, Neusilin US2, and Neusilin UFL2 to improve flowability, compressibility and stability. Results: Formulation LF2 exhibited globule size of 82.4 nm, PDI 0.349 and Zeta potential -28.6 mV with drug indicating the stability and homogeneity of particles. The optimized formulation SF4 containing Neusilin UFL2 was characterized by DSC, FTIR, X-Ray diffraction studies and found no incompatibility and no major shifts were noticed. Formulation SF4 released 100 % drug in 20 min against pure drug release of 47 % in 60 min. Regardless of the form (i.e. liquid or solid) similar performance of emulsification efficiency is observed. Conclusion: The results demonstrated that the technique of novel solid self-nanoemulsifying drug delivery system can be employed to enhance the solubility and dissolution rate of poorly water-soluble drug budesonide.


2012 ◽  
Vol 62 (4) ◽  
pp. 563-580 ◽  

The aim of the study was to develop and evaluate a self- -emulsifying drug delivery system (SEDDS) formulation to improve solubility and dissolution and to enhance systemic exposure of a BCS class II anthelmetic drug, albendazole (ABZ). In the present study, solubility of ABZ was determined in various oils, surfactants and co-surfactants to identify the microemulsion components. Pseudoternary phase diagrams were plotted to identify the microemulsification existence area. SEDDS formulation of ABZ was prepared using oil (Labrafac Lipopfile WL1349) and a surfactant/ co-surfactant (Tween 80/PEG 400) mixture and was characterized by appropriate studies, viz., microemulsifying properties, droplet size measurement, in vitro dissolution, etc. Finally, PK of the ABZ SEDDS formulation was performed on rats in parallel with suspension formulation. It was concluded that the SEDDS formulation approach can be used to improve the dissolution and systemic exposure of poorly water-soluble drugs such as ABZ.


2019 ◽  
Vol 10 (4) ◽  
pp. 3304-3314
Author(s):  
Sabitri Bindhani ◽  
Snehamayee Mohapatra ◽  
Rajat Ku. Kar ◽  
Utkalika Mahapatra

Eprosartan Mesylate (EM), an angiotensin II receptor blocker used in the treatment of high blood pressure. But poor solubility and bioavailability (13%) of eprosartan mesylate is a major challenging factor for improving its drug release rate. The main objective of the present work to develop and characterize self micro emulsifying drug delivery system of eprosartan mesylate by using compatible oil, surfactant and co-surfactant. For the selection of oil, surfactant and cosurfactant, solubility screening studies has been carried out. The nine formulations are prepared using peppermint oil, tween 80 and PEG 400. A pseudo ternary phase diagram was prepared to determine the self emulsion region. Four optimized formulations were prepared at 1:1 ratio(a mixture of surfactant and cosurfactant). These four formulations were evaluated for self-emulsification time, droplet size measurement, drug content analysis robustness to dilution test, viscosity analysis, f.t.i.r. The study and in-vitro diffusion studies. The ratio of scosmix (a mixture of surfactant and cosurfactant) of optimized formulation (pf5) was varied to pfa1 (2:1), pf2 (3:1), pfa3 (1:2) and compared with pure drug. The formulation having pfa1 (2:1) shown drug release of 93.13 % in 330 minutes where as pure drug showed a drug release of 54.51% in 330 minutes. So the prepared SMEDDS formulations were efficient and better than the pure drug, and it followed Korsmeyer pappes due to highest r2 value followed by Hixon crowel. It was concluded that incorporation of eprosartan mesylate in selfmicroemulsifying system is a great potential for improving the solubility and dissolution rate of eprosartan mesylate.


This work reported a first liquid self-nanoemulsifying drug delivery system (SEDD) of cilostazol using oleic acid as oil phase, tween 80 as surfactant, and transcutol as co-surfactant. Cilostazol is a poor water-soluble phosphodiesterase III inhibitor, which has antiplatelet and vasodilator effect used to relief intermittent claudication symptoms. Cilostazol solubility was determined in various oils, surfactants and co-surfactants and phase diagram was constructed at different oil: surfactant: co-surfactant ratios to determine the existence of nano-emulsion region. The in-vitro dissolution profile showed an optimized cilostazol SEDD formula (LT1) containing oleic acid (10%) as oil, tween 80 (45%) as surfactant, and transcutol (45%) as co-surfactant in comparison with the commercial conventionally Tablets. The LT1 formula was thermodynamically sTable, with a zeta potential of -30.48 mV and droplet size 154 nm. The LT1 capsule showed a superior dissolution profile (100%) when compared to the commercial Tablet (64%) of cilostazol. The objective of the present study is to formulate cilostazol as an oral liquid SEDD with better solubility and drug release to overcome a variable bioavailability of the commercial Tablet in which a high-fat meal increases absorption to approximately 90%.


Author(s):  
Suwarna R. Deshmukh ◽  
Suparna S. Bakhle ◽  
Kanchan P. Upadhye ◽  
Gouri R. Dixit

Objective: Gliclazide (GCZ) is a widely prescribed anti-diabetic drug belongs to class IΙ under BCS and exhibit low and variable oral bioavailability due to its poor aqueous solubility. The present investigations highlight the development of solid self-emulsifying drug delivery system (solid-SEDDS) for improved oral delivery of the poorly water-soluble drug, GCZ.Methods: Various oils, surfactant and co-surfactant, were screened for their emulsification ability. Ternary phase diagrams were plotted to identify the zone of micro-emulsification. Liquid SEDDS of the drug were formulated using lemon oil as the oil phase, tween 80, as the surfactant, and labrasol, as the co-surfactant. The optimized liquid SEDDS was transformed into free-flowing powder using florite R as the adsorbent. Results: Self-emulsifying powder retained the self-emulsifying property of the liquid SEDDS. The morphology of solid-SEDDS from scanning electron microscopy studies demonstrated the presence of spherical, granular particles indicating good flowing ability. X-ray powder diffraction studies confirmed solubilization of the drug in the lipid excipients and/or transformation of a crystalline form of the drug to amorphous form. In vitro dissolution studies revealed enhanced release of the drug from solid-SEDDS as compared to plain drug and marketed formulation.Conclusion: Thus it can be concluded that solid-SEDDS, amenable for the development of solid dosage form, can be successfully developed using florite R with the potential of enhancing the solubility, dissolution rate, and bioavailability of the drug.


2011 ◽  
Vol 140 ◽  
pp. 200-205
Author(s):  
Na Zhang ◽  
Na Zhang ◽  
Dan Dan She ◽  
Lian Dong Hu ◽  
Hong Fang Liu

The purpose of the current investigation was to improve the solubility of daidzein, a poorly water-soluble drug which exhibits low oral absorption bioavailability, in a self-micro-emulsifying drug delivery system that is suitable for oral administration. A carefully executed central composite design was applied to screen the optimal formulation of daidzein SMEDDS. The formulations were characterized by solubility of the drug in the vehicle, droplet size, and emulsification time. The optimal formulation consists of 20 % ethyl oleate, 64 % OP emulsifier, and 16 % polyethylene glycol 400. The droplet sizes of drug-free SMEDDS and drug-loaded SMEDDS were 66.4 nm and 77.9 nm respectively. Additionally, the dissolution rate of daidzein from SMEDDS was significantly enhanced in comparison to pure drug. The data suggested that the daidzein SMEDDS was prepared successfully.


2013 ◽  
Vol 678 ◽  
pp. 286-290 ◽  
Author(s):  
N. Subramanian ◽  
P. Chandra Sekar ◽  
S. Abimanyu ◽  
S.P. Sharavanan ◽  
R. Gayathri ◽  
...  

The aim of the present study was to develop a self nanoemulsifying drug delivery system (SNEDDS) for the improved oral delivery of Rosuvastatin, a lipid lowering agent. Captex 810D, based on the higher solubility of Rosuvastatin was selected as an oil phase. Mixture of permeation enhancers such as Solutol HS15 and Acconon MC8 was selected as surfactants for the formulation of SNEDDS. Formulated SNEDDS upon mixing with water, dispersed rapidly into fine droplets size ranging from 95-263nm. Further the SNEDDS was evaluated for self nanoemulsification time, precipitation, cloud point, morphology, in-vitro drug release and ex-vivo permeation. Formulation (F3) showed the globule size of 139nm, quick self nanoemulsifiation time (20 sec) and transparency (97%). Maximum drug release of 99.9% and higher drug permeation of 95% was observed with formulation F3 when compared with conventional tablet. The formulated SNEDDS can be used to improve the oral absorption and bioavailability of Rosuvastatin.


2007 ◽  
Vol 25 (6) ◽  
pp. 1347-1354 ◽  
Author(s):  
Heiko Kranz ◽  
Erol Yilmaz ◽  
Gayle A. Brazeau ◽  
Roland Bodmeier

Sign in / Sign up

Export Citation Format

Share Document