ethyl oleate
Recently Published Documents


TOTAL DOCUMENTS

173
(FIVE YEARS 51)

H-INDEX

22
(FIVE YEARS 5)

2022 ◽  
Vol 15 (1) ◽  
pp. 70
Author(s):  
Manohar Mahadev ◽  
Hittanahalli S. Nandini ◽  
Ramith Ramu ◽  
Devegowda V. Gowda ◽  
Zainab M. Almarhoon ◽  
...  

The current study was intended to fabricate and evaluate ultrasonically assisted quercetin nanoemulsion (Que-NE) for improved bioavailability and therapeutic effectiveness against diabetes mellitus in rats. Ethyl oleate, Tween 20, and Labrasol were chosen as oil, surfactant, and cosurfactant, respectively. Box–Behnken design (BBD) was employed to study the influence of process variables such as % surfactant and cosurfactant mixture (Smix) (5 to 7%), % amplitude (20–30%) and sonication time (2.5–7.5 min) on droplet size, polydispersibility index (PDI), and % entrapment efficiency (%EE) were studied. The optimization predicted that 9% Smix at 25% amplitude for 2.5 min would produce Que-NE with a droplet size of 125.51 nm, 0.215 PDI, and 87.04% EE. Moreover, the optimized Que-NE exhibited appreciable droplet size and PDI when stored at 5, 30, and 40 °C for 45 days. Also, the morphological characterization by transmission electron microscope (TEM) indicated the spherical shape of the optimized nanoemulsion. Furthermore, the Que-NE compared to pure quercetin exhibited superior release and enhanced oral bioavailability. The streptozocin-induced antidiabetic study in rats revealed that the Que-NE had remarkable protective and therapeutic properties in managing body weight, blood glucose level, lipid profile, and tissue injury markers, alongside the structure of pancreatic β-cells and hepatocytes being protected. Thus, the developed Que-NE could be of potential use as a substitute strategy for diabetes.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7676
Author(s):  
Muddaser Shah ◽  
Waheed Murad ◽  
Najeeb Ur Rehman ◽  
Sidra Mubin ◽  
Jamal Nasser Al-Sabahi ◽  
...  

The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy’s. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.


Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6769
Author(s):  
M. Shantal Rodríguez-Flores ◽  
Soraia I. Falcão ◽  
Olga Escuredo ◽  
Luis Queijo ◽  
M. Carmen Seijo ◽  
...  

Vespa velutina has been rapidly expanding throughout Galicia since 2012. It is causing human health risks and well-known losses in the beekeeping sector. Control methods are scarce, unspecific, and ineffective. Semiochemicals are insect-derived chemicals that play a role in communication and they could be used an integrated pest management tool alternative to conventional pesticides. A previous determination of the organic chemical profile should be the first step in the study of these semiochemicals. HS-SPME in living individuals and the sting apparatus extraction followed by GC-MS spectrometry were combined to extract a possible profile of these compounds in 43 hornets from Galicia. The identified compounds were hydrocarbons, ketones, terpenes, and fatty acid, and fatty acid esters. Nonanal aldehyde appeared in important concentrations in living individuals. While pentadecane, 8-hexyl- and ethyl oleate were mainly extracted from the venom apparatus. Ketones 2-nonanone, 2-undecanone and 7-nonen-2-one, 4,8-dimethyl- were identified by both procedures, as was 1,7-Nonadiene, 4,8-dimethyl-. Some compounds were detected for the first time in V. velutina such as naphthalene, 1,6-dimethyl-4-(1-methylethyl). The chemical profile by caste was also characterized.


Author(s):  
Hamisu Ibrahim ◽  
Ahmed Jibrin Uttu ◽  
Muhammad Sani Sallau ◽  
Ogunkemi Risikat Agbeke Iyun

Abstract Background Majority of phytochemicals have been known to bear valuable therapeutic activities such as insecticidal, antibacterial, antifungal, anticonstipative, spasmolytic, antiplasmodial and antioxidant activities. Strychnos innocua is straight-stemmed tree belonging to the family Loganiaceae and can grow up to 18 m tall. The plant is used for various pharmacological purposes. The aim of this study was to determine the chemical composition of the ethyl acetate extract of root bark of S. innocua using GC–MS analysis. The root bark was collected, air-dried and then crushed to powder. Standard extraction method (maceration) was used to obtain the ethyl acetate extract. The GC–MS was carried out on the extract using GC 7890B, MSD 5977A, Agilent Tech. Results Thirty-seven compounds were identified among which dibutyl benzene-1,2-dicarboxylate showed the highest peak area (31.03%) and monomethyl pimelate showed the lowest peak area (0.39%). The major compounds identified were cyclooctane (methoxymethoxy), 2,4-dimethylheptanedioic acid dimethyl ester, azelaic acid, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, dibutyl benzene-1,2-dicarboxylate, butyl 8-methylnonyl benzene-1,2-dicarboxylate, 9,15-octadecadienoic acid, methyl ester, cis-vaccenic acid, linoleic acid ethyl ester and ethyl oleate. Conclusions In conclusion, these phytoconstituents might be responsible for the medicinal efficacy of the root bark of S. innocua and can be used as a source therapeutic drug.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1718
Author(s):  
Francesco Saverio Robustelli della Cuna ◽  
Jacopo Calevo ◽  
Miriam Bazzicalupo ◽  
Cristina Sottani ◽  
Elena Grignani ◽  
...  

A detailed chemical composition of Dendrobium essential oil has been only reported for a few main species. This article is the first to evaluate the essential oil composition, obtained by steam distillation, of five Indian Dendrobium species: Dendrobium chrysotoxum Lindl., Dendrobium harveyanum Rchb.f., and Dendrobium wardianum R.Warner (section Dendrobium), Dendrobium amabile (Lour.) O’Brien, and Dendrobium chrysanthum Wall. ex Lindl. (section Densiflora). We investigate fresh flower essential oil obtained by steam distillation, by GC/FID and GC/MS. Several compounds are identified, with a peculiar distribution in the species: Saturated hydrocarbons (range 2.19–80.20%), organic acids (range 0.45–46.80%), esters (range 1.03–49.33%), and alcohols (range 0.12–22.81%). Organic acids are detected in higher concentrations in D. chrysantum, D. wardianum, and D. harveyanum (46.80%, 26.89%, and 7.84%, respectively). This class is represented by palmitic acid (13.52%, 5.76, and 7.52%) linoleic acid (D. wardianum 17.54%), and (Z)-11-hexadecenoic acid (D. chrysantum 29.22%). Esters are detected especially in species from section Dendrobium, with ethyl linolenate, methyl linoleate, ethyl oleate, and ethyl palmitate as the most abundant compounds. Alcohols are present in higher concentrations in D. chrysantum (2.4-di-tert-butylphenol, 22.81%), D. chrysotoxum (1-octanol, and 2-phenylethanol, 2.80% and 2.36%), and D. wardianum (2-phenylethanol, 4.65%). Coumarin (95.59%) is the dominant compound in D. amabile (section Densiflora) and detected in lower concentrations (range 0.19–0.54%) in other samples. These volatile compounds may represent a particular feature of these plant species, playing a critical role in interacting with pollinators.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Shanshan Wang ◽  
Ye Shang ◽  
Chunxiao Liang ◽  
Tao Liu ◽  
Kunze Du ◽  
...  

A green, flexible, and effective strategy was proposed to quantify four target compounds (muscone, ethyl palmitate, ethyl oleate, and ethylparaben) from musk by binary eluent based vortex-assisted matrix solid-phase dispersion (MSPD) extraction coupled with GC/MS. Single-factor tests and orthogonal design were employed to optimize the MSPD parameters. In addition, the binary eluent system, methanol, and ethyl acetate 3 : 7 (v/v) were used to extract the target analytes. Finally, C18 was applied as the easily available dispersant and the sample powder was ground for 2 min. Thereafter, the mixture was rapidly extracted with the binary eluents under whirling for 3 min. Eventually, the analysis of the samples was completed within 12 min by GC/MS. All correlation coefficients (r) of four targets were more than 0.9991. The recoveries of all target compounds ranged from 92.8% to 101% while their RSDs were less than 6.94%. There was no significant matrix interference for the analysis. Thus, the combination of vortex-assisted MSPD with GC/MS was considered as a novel, rapid, and environmentally friendly quantitative approach for musk samples.


2021 ◽  
Vol 12 (7) ◽  
pp. 25-31
Author(s):  
Pooja . ◽  
Pankaj Kumar Sharma ◽  
Viswanath Agrahari

Background: The aim of this study is to develop a liquid self-nano emulsifying drug delivery system for alverine (liquid-SNEDDS).Excipients in the alverine SNEDDS include Ethyl oleate as the oil phase, Tween 80 as a surfactant, and PEG600, Propylene glycol as a cosurfactant.The prepared eleven formulations of alverine SNEDDS were performed for emulsification time, percentage transmittance, particle size, drug release, in vitro dissolution and stability studies.The optimised alverine liquid SNEDDS formulation (D1) was studied for drug-excipient compatibility using infrared spectroscopy, as well as particle size, zeta potential, transmission electron microscopy, and stability. Alverine SNEDDS have a spherical shape with uniform particle distribution, according to their morphology. D1's optimised formulation's drug release percentage (96.6). The stability data revealed no discernible changes in drug content, emulsifying properties, drug release, or appearance. As a result, a potential SNEDDS formulation of alverine with improved solubility, dissolution rate, and bioavailability was developed.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1089
Author(s):  
Serena Bertoni ◽  
Nadia Passerini ◽  
Beatrice Albertini

Despite the growing interest in lipid-based formulations, their polymorphism is still a challenge in the pharmaceutical industry. Understanding and controlling the polymorphic behavior of lipids is a key element for achieving the quality and preventing stability issues. This study aims to evaluate the impact of different oral-approved liquid lipids (LL) on the polymorphism, phase transitions and structure of solid lipid-based formulations and explore their influence on drug release. The LL investigated were isopropyl myristate, ethyl oleate, oleic acid, medium chain trigycerides, vitamin E acetate, glyceryl monooleate, lecithin and sorbitane monooleate. Spray-congealing was selected as an example of a melting-based solvent-free manufacturing method to produce microparticles (MPs) of tristearin (Dynasan®118). During the production process, tristearin MPs crystallized in the metastable α-form. Stability studied evidenced a slow phase transition to the stable β-polymorph overtime, with the presence of the α-form still detected after 60 days of storage at 25 °C. The addition of 10% w/w of LL promoted the transition of tristearin from the α-form to the stable β-form with a kinetic varying from few minutes to days, depending on the specific LL. The combination of various techniques (DSC, X-ray diffraction analysis, Hot-stage polarized light microscopy, SEM) showed that the addition of LL significantly modified the crystal structure of tristearin-based formulations at different length scales. Both the polymorphic form and the LL addition had a strong influence on the release behavior of a model hydrophilic drug (caffeine). Overall, the addition of LL can be considered an interesting approach to control triglyceride crystallization in the β-form. From the industrial viewpoint, this approach might be advantageous as any polymorphic change will be complete before storage, hence enabling the production of stable lipid formulations.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 489
Author(s):  
Marta Díaz-Navarro ◽  
Paula Bolívar ◽  
María Fe Andrés ◽  
María Teresa Gómez-Muñoz ◽  
Rafael A. Martínez-Díaz ◽  
...  

Arthropods and specifically beetles can synthesize and/or sequester metabolites from dietary sources. In beetle families such as Tenebrionidae and Meloidae, a few studies have reported species with toxic defensive substances and antiparasitic properties that are consumed by birds. Here we have studied the antiparasitic activity of extracts from beetle species present in the habitat of the Great Bustard (Otis tarda) against four pathogen models (Aspergillus niger, Meloidogyne javanica, Hyalomma lusitanicum, and Trichomonas gallinae). The insect species extracted were Tentyria peiroleri, Scaurus uncinus, Blaps lethifera (Tenebrionidae), and Mylabris quadripunctata (Meloidae). M. quadripunctata exhibited potent activity against M. javanica and T. gallinae, while T. peiroleri exhibited moderate antiprotozoal activity. The chemical composition of the insect extracts was studied by gas chromatography coupled with mass spectrometry (GC-MS) analysis. The most abundant compounds in the four beetle extracts were hydrocarbons and fatty acids such as palmitic acid, myristic acid and methyl linoleate, which are characteristic of insect cuticles. The presence of cantharidin (CTD) in the M. quadripunctata meloid and ethyl oleate (EO) in T. peiroleri accounted for the bioactivity of their extracts.


Sign in / Sign up

Export Citation Format

Share Document