scholarly journals An Overview of Pharmaceutical Co-Crystal

2019 ◽  
Vol 7 (2) ◽  
pp. 39-46
Author(s):  
Rahul Kumar Ancheria ◽  
Saloni Jain ◽  
Deepak Kumar ◽  
Sankar Lal Soni ◽  
Mukesh Sharma

Pharmaceutical co-crystals are nonionic supramolecular complexes and supramolecular chemistry. Pharmaceutical co-crystal consists of active pharmaceutical ingredients and coformers. Pharmaceutical co-crystals can be employed to improve vital physicochemical characteristics of a drug, including solubility, dissolution, bioavailability and stability of pharmaceutical compounds while maintaining its therapeutic activity. Co-crystals can be constructed through several types of interaction, including hydrogen bonding, pi-stacking, and vander Waals forces. Pharmaceutical co-crystals could play a major role in the future of API formulation. Pharmaceutical co-crystal can be improvement future aspect problems related physicochemical properties of API

INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (09) ◽  
pp. 5-11
Author(s):  
S. S Pekamwar ◽  
◽  
D. D. Gadade ◽  
G. K. Kale

Physicochemical characteristics of active pharmaceutical compounds, including solubility and flow properties, are crucial in the development of drug formulation. The physical form of compound and formulation has potential effect on biopharmaceutical parameters of the drug. The crystal engineering approach can be employed for modification of physicochemical properties of the active pharmaceutical ingredients whilst maintaining the intrinsic activity of the drug molecule. This article covers the advantages of co-crystals over salts, solvates (hydrates), solid dispersions and polymorphs, mechanism of formation of co-crystals, methods of preparation of co-crystals and application of co-crystals to modify physicochemical characteristics of active pharmaceutical ingredients along with case studies.


CrystEngComm ◽  
2018 ◽  
Vol 20 (24) ◽  
pp. 3428-3434
Author(s):  
Colin C. Seaton ◽  
Rayan R. Thomas ◽  
Eman A. A. Essifaow ◽  
Elisa Nauha ◽  
Tasnim Munshi ◽  
...  

The creation of salts is a frequently used approach to modify physicochemical properties of active pharmaceutical ingredients. This work prepares a collection of sulfathiazole salts to probe the influence of counterion structure on crystal packing.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Qi Jiang ◽  
David A. Hirsh ◽  
Yifan Tu ◽  
Laibin Luo

Pharmaceutical multicomponent crystals (MCCs) including salts and co-crystals of active pharmaceutical ingredients (APIs), are an active focus of research to improve various physicochemical properties of drugs. In this work, we...


Crystals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1088
Author(s):  
Cristóbal Verdugo-Escamilla ◽  
Carolina Alarcón-Payer ◽  
Antonio Frontera ◽  
Francisco Javier Acebedo-Martínez ◽  
Alicia Domínguez-Martín ◽  
...  

The design of new multicomponent pharmaceutical materials that involve different active pharmaceutical ingredients (APIs), e.g., drug-drug cocrystals, is a novel and interesting approach to address new therapeutic challenges. In this work, the hydrochlorothiazide-caffeine (HCT–CAF) codrug and its methanol solvate have been synthesized by mechanochemical methods and thoroughly characterized in the solid state by powder and single crystal X-ray diffraction, respectively, as well as differential scanning calorimetry, thermogravimetric analyses and infrared spectroscopy. In addition, solubility and stability studies have also been performed looking for improved physicochemical properties of the codrug. Interestingly, the two reported structures show great similarity, which allows conversion between them. The desolvated HCT–CAF cocrystal shows great stability at 24 h and an enhancement of solubility with respect to the reference HCT API. Furthermore, the contribution of intermolecular forces on the improved physicochemical properties was evaluated by computational methods showing strong and diverse H-bond and π–π stacking interactions.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2705
Author(s):  
João Luís Ferreira da Silva ◽  
M. Fátima Minas da Piedade ◽  
Vânia André ◽  
Sofia Domingos ◽  
Inês C. B. Martins ◽  
...  

This short review presents and highlights the work performed by the Lisbon Group on the mechanochemical synthesis of active pharmaceutical ingredients (APIs) multicomponent compounds. Here, we show some of our most relevant contributions on the synthesis of supramolecular derivatives of well-known commercial used drugs and the corresponding improvement on their physicochemical properties. The study reflects, not only our pursuit of using crystal engineering principles for the search of supramolecular entities, but also our aim to correlate them with the desired properties. The work also covers our results on polymorphic screening and describes our proposed alternatives to induce and maintain specific polymorphic forms, and our approach to avoid polymorphism using APIs as ionic liquids. We want to stress that all the work was performed using mechanochemistry, a green advantageous synthetic technique.


Sign in / Sign up

Export Citation Format

Share Document