scholarly journals Formulation and Physical Characterization of Bio-Degradable Chitosan-Poloxamer Gel Base for Local Drug Delivery

2020 ◽  
Vol 10 (4) ◽  
pp. 59-66 ◽  
Author(s):  
Prasanna T. Dahake ◽  
Sudhindra M Baliga ◽  
Triveni Punse ◽  
Dinesh M Biyani ◽  
Neha Raut ◽  
...  

Objective: Thermo-modulated in-situ hydrogel (TSHG) are formulated routinely utilizing poloxamer for extended drug release. However physical properties of such formulations may have some flaws, which can be rectified using a combination of polymers with better physical properties such as chitosan. The purpose of the present study was to fabricate biodegradable chitosan-poloxamer-based in-situ drug delivery systems and assessment of their physical properties. Methods: The present chitosan-poloxamer gel base was formulated using a two-stage method. Initially, chitosan gel was prepared by dissolving 1% w/w chitosan in glacial acetic acid. The poloxamer gel was prepared using “cold method”. The final chitosan-poloxamer gel base was prepared by mixing equal amounts of both solutions and evaluated for physical and mechanical properties. Result and Discussion: The DSC thermogram demonstrated no obvious interactions among ingredients or micellization temperature. The gelation temperature of the gel was between 27 and 330C. The pH was 7 with slight clarity. The viscosity of the gel ranged from 15.14 to 41.19 pa.s. The gel was syringable between 4-300C and biodegradable under physiological conditions. The mean particle size of the gel under SEM was found in the range of 300-554 nm. Conclusion: After the evaluation of the formulation, it can be concluded that all the ingredients in the gel showed good compatibility with each other, which could form a stable and homogeneous gel with favorable mechanical and physical properties. Keywords: chitosan, drug delivery system, hydrogels, poloxamer

2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2018 ◽  
Vol 3 (1) ◽  
pp. 80-85
Author(s):  
Ernawati Kawa ◽  
Minsyahril Bukit ◽  
Albert Zicko Johannes

Abstrak Telah dilakukan penelitian tentang penentuan sifat mekanis dan fisis batu bata dengan penambahan tempurung kelapa asal alor. Penenlitian ini bertujuan mengetahui kualitas batu bata yang memenuhi standar kelayakan sebagai bahan konstruksi dengan penambahan arang tempurung kelapa aal alor dengan presentasi 0%, 5%, 10%, 15% terhadap tanah liat (lempung). Batu bata dicetak dengan prosedur pemadatan, pengringn dan pembakaran. Setelah prosedur pencetakkan selesai kemudian di lanjutkan dengan pengujian sefat mekanis dan sifat fisis, yaitu uji kuat tekan (compression strength), densitas (density), porositas (porosity) hasil  kuat tekan batu bata didapatkan berdasarkan pengujian: a) uji kuat tekan, batu bata tanpa penambahan (0%) : 4,94 meemenuhi standar kuat tekan kelas 50 (SNI 15-2094-2000), b) uji porositas, batu bata 0% dan 5% : 3,82% dan 17,93% memenuhi standar porositas dengan batas maksimum 20% (SNI 15-2094-2000) dan uji densitas, batu bata tidak ada yang memenuhi standar (SII 0021-1978) Kata kunci: sifat mekanis, sifat fisis, tempurung kelapa, densitas, porositas, kuat tekan Abstract A research had been conducted to determine physical and mechanical properties of the bricks with the addition coconut shell charcoal from alor. This research aims at the quality of the bricks to meet the standars of eligibility as a contruction material. The addition of coconut shell charcoal is variate with the presentage 0%, 5%, 10%, 15% to the clay mass. The brick being printed with procedure compaction, drying, and baking. After the printing procedure is done then next is testing the mechanical and physical properties, that is compression strength test, density test, and porosity test. The brick quality result is obtained based on the test: a) compression strength test, the brick without addition (0%) : 4,94  (SNI 15-2094-2000) is comply with the standard compression strength the class 50 , b) porosity test, the brick 0% and 5% (3,82% and 17,93%) meet the standard with the maximum limit 20% ( SNI 15-2094-2000)  , and c) density test, every bricks does not meet the standard (SII 0021- 1978). Keywords: mechanical properties, physical properties, coconut shell, density, porosity, compression strength


2017 ◽  
Vol 52 (1) ◽  
pp. 49-52
Author(s):  
Elias ◽  
AK Das ◽  
MM Rahman ◽  
MA Islam

This research intends to explore the mechanical and physical properties of waterlogged rain tree (Samanea saman). The variation of mechanical and physical wood properties grown in waterlogged and non-waterlogged area were studied. Four trees of the species were selected from two areas. Important mechanical and physical properties were examined for the wood of two types of trees Oven dry density for the wood of waterlogged tree was 420 kg/m3 whether it was 550 kg/m3 for the wood of non-waterlogged tree. The MOR of wood of waterlogged tree was 58.2 N/mm2 and wood of non-waterlogged tree produced 78.1 N/mm2. The MOE of the wood of waterlogged tree and non-waterlogged tree were 1478 and 4876 N/mm2. The physical and mechanical properties were lower for the wood of waterlogged tree. Such findings may in proper uses of the species.Bangladesh J. Sci. Ind. Res. 52(1), 49-52, 2017


2015 ◽  
Vol 1754 ◽  
pp. 19-24
Author(s):  
A. Alipour Skandani ◽  
R. Ctvrtlik ◽  
M. Al-Haik

ABSTRACTMaterials with different allotropes can undergo one or more phase transformations based on the changes in the thermodynamic states. Each phase is stable in a certain temperature/pressure range and can possess different physical and mechanical properties compared to the other phases. The majority of material characterizations have been carried out for materials under equilibrium conditions where the material is stabilized in a certain phase and a lesser portion is devoted for onset of transformation. Alternatively, in situ measurements can be utilized to characterize materials while undergoing phase transformation. However, most of the in situ methods are aimed at measuring the physical properties such as dielectric constant, thermal/electrical conductivity and optical properties. Changes in material dimensions associated with phase transformation, makes direct measurement of the mechanical properties very challenging if not impossible. In this study a novel non-isothermal nanoindentation technique is introduced to directly measure the mechanical properties such as stiffness and creep compliance of a material at the phase transformation point. Single crystal ferroelectric triglycine sulfate (TGS) was synthetized and tested with this method using a temperature controlled nanoindentation instrument. The results reveal that the material, at the transformation point, exhibits structural instabilities such as negative stiffness and negative creep compliance which is in agreement with the findings of published works on the composites with ferroelectric inclusions.


2019 ◽  
Vol 91 ◽  
pp. 02041
Author(s):  
Sergey Udodov ◽  
Yuriy Galkin ◽  
Philip Belov

Additive manufacturing (3D printing) is becoming more and more common in the field of modern construction. However, for wider implementation of this technology, it is necessary to solve a number of material-oriented scientific problems related to development of concrete composition with targeted rheological, stress-strain, physical and mechanical properties. It has been established that time periods between successful applications of layers play the crucial role in ensuring monolithic features of the “printed” structures. Application of mathematics planning of the experiment allowed establishing the main principles of formation of basic physical and mechanical properties of fine-grained concrete depending on material composition.


2016 ◽  
Vol 67 ◽  
pp. 502-510 ◽  
Author(s):  
Seyed Mohammad Hossein Dabiri ◽  
Alberto Lagazzo ◽  
Fabrizio Barberis ◽  
Mehdi Farokhi ◽  
Elisabetta Finochio ◽  
...  

2009 ◽  
Vol 23 (06n07) ◽  
pp. 1241-1247 ◽  
Author(s):  
LIJING WANG ◽  
TONG LIN ◽  
XUNGAI WANG

This paper reports on some physical properties of a conducting polymer, polypyrrole, coated textiles. Polypyrrole was coated on textiles chemically through in-situ solution or vapor polymerisation to produce conducting textiles. The effects of the conductive coating on the physical and mechanical properties of the fibrous materials are presented. The coating durability and conductivity of the textiles have also been examined.


Sign in / Sign up

Export Citation Format

Share Document