PEMANFAATAN KAYU AKASIA MANGIUM (Acacia mangium Willd) UNTUK MEBEL

2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.

2018 ◽  
Vol 3 (1) ◽  
pp. 80-85
Author(s):  
Ernawati Kawa ◽  
Minsyahril Bukit ◽  
Albert Zicko Johannes

Abstrak Telah dilakukan penelitian tentang penentuan sifat mekanis dan fisis batu bata dengan penambahan tempurung kelapa asal alor. Penenlitian ini bertujuan mengetahui kualitas batu bata yang memenuhi standar kelayakan sebagai bahan konstruksi dengan penambahan arang tempurung kelapa aal alor dengan presentasi 0%, 5%, 10%, 15% terhadap tanah liat (lempung). Batu bata dicetak dengan prosedur pemadatan, pengringn dan pembakaran. Setelah prosedur pencetakkan selesai kemudian di lanjutkan dengan pengujian sefat mekanis dan sifat fisis, yaitu uji kuat tekan (compression strength), densitas (density), porositas (porosity) hasil  kuat tekan batu bata didapatkan berdasarkan pengujian: a) uji kuat tekan, batu bata tanpa penambahan (0%) : 4,94 meemenuhi standar kuat tekan kelas 50 (SNI 15-2094-2000), b) uji porositas, batu bata 0% dan 5% : 3,82% dan 17,93% memenuhi standar porositas dengan batas maksimum 20% (SNI 15-2094-2000) dan uji densitas, batu bata tidak ada yang memenuhi standar (SII 0021-1978) Kata kunci: sifat mekanis, sifat fisis, tempurung kelapa, densitas, porositas, kuat tekan Abstract A research had been conducted to determine physical and mechanical properties of the bricks with the addition coconut shell charcoal from alor. This research aims at the quality of the bricks to meet the standars of eligibility as a contruction material. The addition of coconut shell charcoal is variate with the presentage 0%, 5%, 10%, 15% to the clay mass. The brick being printed with procedure compaction, drying, and baking. After the printing procedure is done then next is testing the mechanical and physical properties, that is compression strength test, density test, and porosity test. The brick quality result is obtained based on the test: a) compression strength test, the brick without addition (0%) : 4,94  (SNI 15-2094-2000) is comply with the standard compression strength the class 50 , b) porosity test, the brick 0% and 5% (3,82% and 17,93%) meet the standard with the maximum limit 20% ( SNI 15-2094-2000)  , and c) density test, every bricks does not meet the standard (SII 0021- 1978). Keywords: mechanical properties, physical properties, coconut shell, density, porosity, compression strength


2017 ◽  
Vol 52 (1) ◽  
pp. 49-52
Author(s):  
Elias ◽  
AK Das ◽  
MM Rahman ◽  
MA Islam

This research intends to explore the mechanical and physical properties of waterlogged rain tree (Samanea saman). The variation of mechanical and physical wood properties grown in waterlogged and non-waterlogged area were studied. Four trees of the species were selected from two areas. Important mechanical and physical properties were examined for the wood of two types of trees Oven dry density for the wood of waterlogged tree was 420 kg/m3 whether it was 550 kg/m3 for the wood of non-waterlogged tree. The MOR of wood of waterlogged tree was 58.2 N/mm2 and wood of non-waterlogged tree produced 78.1 N/mm2. The MOE of the wood of waterlogged tree and non-waterlogged tree were 1478 and 4876 N/mm2. The physical and mechanical properties were lower for the wood of waterlogged tree. Such findings may in proper uses of the species.Bangladesh J. Sci. Ind. Res. 52(1), 49-52, 2017


2019 ◽  
Vol 91 ◽  
pp. 02041
Author(s):  
Sergey Udodov ◽  
Yuriy Galkin ◽  
Philip Belov

Additive manufacturing (3D printing) is becoming more and more common in the field of modern construction. However, for wider implementation of this technology, it is necessary to solve a number of material-oriented scientific problems related to development of concrete composition with targeted rheological, stress-strain, physical and mechanical properties. It has been established that time periods between successful applications of layers play the crucial role in ensuring monolithic features of the “printed” structures. Application of mathematics planning of the experiment allowed establishing the main principles of formation of basic physical and mechanical properties of fine-grained concrete depending on material composition.


2015 ◽  
Vol 1088 ◽  
pp. 411-414 ◽  
Author(s):  
Francisco Augusto Zago Marques ◽  
Carlos Eduardo G. da Silva ◽  
André Luis Christoforo ◽  
Francisco Antonio Rocco Lahr ◽  
Túlio Hallak Panzera ◽  
...  

This research evaluated, with the of the analyses of variance (ANOVA), a composite material based on epoxy matrix phase reinforced with Portland cement (CP-II) particles (0%wt [100%wt of resin], 20%wt, 40%wt, 60%wt). The response-variable investigated were modulus of elasticity (E) and compressive strength (S), bulk density (ρB), apparent density (ρA) and porosity (P). The highest values of the modulus of elasticity were provided from the composites manufactured with 40wt% of cement addition. The inclusion of 60% of cement implies in a reduction in the mechanical properties when compared with the results of the composite manufactured with 40% of cement. For the physical properties, the gradually inclusion of cement provides increasing in the density of the composites, and reduce the porosity of the materials manufactured.


2020 ◽  
Vol 55 (1) ◽  
pp. 43-52 ◽  
Author(s):  
NB Bohara ◽  
DB Ghale ◽  
YP Chapagain ◽  
N Duwal ◽  
J Bhattarai

Effect of firing temperature on some physico-mechanical properties of ten brick samples, those were composed by feldspars, quartz, alumina-rich spinel, primary mullite and hematite phases, was investigated in accordance with ASTM standards. The brick samples fired between 700° to 1100° C showed 11-23 % water adsorptivity (WA), 19-37 % apparent porosity (AP) and 1.50-1.65 g/cm3 bulk density (BD) indicate good physical properties. The maximum compressive strength (CS) of the fired-bricks at 950° to 1000° C was found to be between 15.6 and 17.1 MPa. At 700°-1000° C firing temperatures, the CS of these bricks is found to be increased exponentially with decreasing of both WA and AP, however it is found to be increased with increasing the BD. Consequently, it can be said that there is good correlation between mechanical and physical properties of the fired-brick samples up to the firing temperature of 1000° C. Bangladesh J. Sci. Ind. Res.55(1), 43-52, 2020


2011 ◽  
Vol 471-472 ◽  
pp. 151-156 ◽  
Author(s):  
Mohd Hafizuddin Ab Ghani ◽  
Ahmad Haji Sahrim

We investigated the effects of amount of antioxidants variability on selected mechanical and physical properties of wood plastic composites. Recycled high density polyethylene (rHDPE) and natural fibers were compounded into pellets by compounder, then the pellets were extruded using co-rotating twin-screw extruder and test specimens were prepared by hot and cold press process. From the study, samples with 0.5 wt% of antioxidants produce the highest strength and elasticity of composites. The effect of antioxidants presence on water uptake is minimal.


2018 ◽  
Vol 12 (2) ◽  
pp. 248
Author(s):  
Fanny Hidayati ◽  
Ramadhani Ayu Purnama ◽  
Harry Praptoyo ◽  
Sri Sunarti

Kebutuhan masyarakat akan kayu solid yang semakin meningkat, memberikan peluang bagi jenis pohon cepat tumbuh seperti Acacia mangium untuk digunakan sebagai bahan semi konstruksi maupun konstruksi. Secara umum, kualitas kayu dipengaruhi oleh sifat pertumbuhan terutama kecepatan pertumbuhan. Pengaruh kecepatan pertumbuhan terhadap sifat-sifat kayu mangium belum banyak di diteliti. Oleh karena itu, penelitian ini bertujuan untuk mengetahui sifat fisika dan mekanika kayu mangium pada kecepatan tumbuh yang berbeda serta hubungan antara kerapatan dasar dengan sifat-sifat lain yang diuji. Sembilan pohon mangium umur 4 tahun yang digunakan dalam penelitian ini berasal dari Kabupaten Wonogiri, Jawa Tengah. Adapun sifat-sifaf kayu yang diuji adalah kerapatan dasar, perubahan dimensi, rasio T/R, keteguhan lengkung statis (MOE dan MOR), keteguhan tekan sejajar dan tegak lurus serat. Selanjutnya data yang diperoleh diuji dengan one-way ANOVA. Sebagai hasilnya, sifat fisika dan mekanika kayu yang diuji menunjukkan hasil yang tidak berbeda nyata pada tiga kategori kecepatan tumbuh yang berbeda, kecuali pada penyusutan radialnya. Selanjutnya, kerapatan dasar berkorelasi positif secara signifikan terhadap penyusutan radial dan tangensial serta kekuatan tekan sejajar dan tegak lurus serat. Hal ini menunjukkan bahwa kerapatan dasar merupakan indikatoryang bagus untuk mempredikasi sifat fisika dan mekanika kayu mangium. Effect of Growth Rate on Physical and Mechanical Properties of 4-year-old Acacia mangium Wood from Wonogiri, Central JavaAbstractIncreasing solid wood demand provides an opportunity to fast-growing wood species such as Acacia mangium as semi construction and construction materials. In general, the quality of wood is affected by growth characteristics such as radial growth rate. The study about effect of growth rate on the properties of mangium wood is limited in Indonesia. Therefore, this study aimed to determine the physical and mechanical properties of mangium wood at different growth rates. Furthermore, relationship between basic density and other properties was clarified. The nine mangium trees of 4-year-old used in this study were planted in Wonogiri Regency, Central Java. Basic density, shrinkage, T/R ratio, static bending strength (MOE and MOR), compressive strength parallel and perpendicular to grain were determined. The results were analyzed with one-way ANOVA. As a result, the physical and mechanical properties of the woods showed no significant difference in three different categories of growth rates, except for radial shrinkage. Furthermore, the basic density is positively significant correlated with radial and tangential shrinkage and also compressive strength parallel and perpendicular to grain. Based on these results, it is suggesting that basic density is a good indicator for predicting physical and mechanical properties of mangium wood.


2019 ◽  
Vol 10 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Markéta Hošťálková ◽  
Nikola Vavřínová ◽  
Veronika Longauerová

The gypsum is one of the most often used materials in the civil engineering. Very often it is applied in the form of plasterboards without any reinforcement, for example, cladding boards are unusable as supporting construction. To improve the mechanical properties of plasterboards, fibrous materials such as cellulose or glass fiber are added. Reinforcement of gypsum with fibers improves in particular the flexural and shear strength. The main purpose of the research is to clarify whether natural wooden fibers could be used as the reinforced of composite gypsum building materials. Wooden fibers are used as a blown or board thermal insulation. This article presents the results of tests aimed at determining the mechanical and physical properties of gypsum composite reinforced with wooden fibers. The effect of the reinforcement on the strength properties as a compressive strength, flexural strength was verified on a series of test specimens. The results of the tests have shown that the reinforcing of gypsum composite has an impact on the mechanical-physical parameters.


2015 ◽  
Vol 50 (2) ◽  
pp. 71-76
Author(s):  
J Alam ◽  
AK Das ◽  
MM Rahman ◽  
MA Islam

This study is aimed to assess the mechanical and physical properties of waterlogging Acacia nilotica (babla). The important physical and mechanical properties were determined. The oven dry density of the wood of waterlogged tree and non-waterlogged tree was 780 and 850kg/m3. The MOR of the wood of waterlogged tree was 117N/mm2 while non-waterlogged tree showed the value of MOR 127N/mm2. The MOE of the wood of waterlogged tree and non-waterlogged tree was 1880 and 1950 N/mm2 respectively. The study of properties on A. nilotica wood grown in different conditions will help to choose the right type of its wood for suitable purposes.Bangladesh J. Sci. Ind. Res. 50(2), 71-76, 2015


2018 ◽  
Vol 32 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Jagadeesh Bhattarai ◽  
Dol Bahadur Ghale ◽  
Yagya Prasad Chapagain ◽  
Narendra Bahadur Bohara ◽  
Nijan Duwal

Physical and mechanical properties of seven ancient clay brick samples of Kathmandu valley consisting of quartz, feldspars, spinel, margarite, muscovite type of mica mineral and hematite were studied using ASTM standards. All the brick samples used in this study have the water absorption, apparent porosity and bulk density in the range of 10-28 percent, 17-33 percent and 1.2-1.8 g/cm3, respectively, while the compressive strength of all the brick samples is found to be in the range of 5-23 MPa. The bulk density of the tile samples is found to be increased with decreasing the water absorption and apparent porosity. The compressive strength of all the clay brick samples can be correlated with their physical properties. Consequently, durability of the ancient bricks is directly influenced by their physical properties of water absorption, apparent porosity and bulk density.


Sign in / Sign up

Export Citation Format

Share Document